
Discrete Adjoint Based Time-Step Adaptation and Error
Reduction in Unsteady Flow Problems

Karthik Mani ∗and Dimitri J. Mavriplis †

Department of Mechanical Engineering, University of Wyoming, Laramie, Wyoming 82071-3295

The paper presents an adjoint based approach for determining global error in the time domain that is
relevant to scalar outputs computed as functions of the unsteady flow solution. The algorithm is derived for
the unsteady Euler equations and takes into account the effect of dynamic meshes. Two primary components
of the total error are specifically identified, namely, the error due to temporal resolution and the error due
to partial convergence of the governing equations at each implicit time step. The primary error components
are further decomposed into individual contributions arising from the flow equations and the mesh motion
equations. The distribution of the global error from these various components is then used as the criterion for
adaptation. The developed method is applied to a simple unsteady test case involving a sinusoidally pitching
airfoil in order to demonstrate its strength and features.

I. Introduction

The time-integration process in unsteady flow problems is typically carried out using a uniform time step which
is applied throughout the time domain of interest. The limitation on the size of the time step is mainly governed by
the time resolution required to capture essential unsteady flow features and deliver acceptably low temporal error.
The inherent non-linearity of the flow equations makes it difficult to determine regions in the time domain that are
most significant for these tasks. The traditional approach is to use a uniform time step of a size that by engineering
knowledge is known to be sufficient to capture essential flow features. The disadvantage of such a procedure is that
it becomes expensive due to high resolution in the regions of the time domain where such resolution may not be
necessary. Additionally, while the overall cost of an unsteady simulation may be correlated against the resolution
of the time domain, the primary cost of obtaining the solution of the flow equations at each time-level arises from
the non-linear iterative solution procedure employed. Typically the equations are never solved to machine precision
unless the spatial resolution of the problem under consideration is relatively small. Additionally, convergence to small
tolerance levels can become time consuming for stiff problems particularly in the presence of anisotropic mesh effects.
A sensible guideline for determining suitable implicit system convergence levels is that the algebraic error resulting
from incomplete system convergence at each time step be reduced to levels below the local temporal discretization
error at each time step.1, 2 However, this requires a good measure of the local temporal error as well as some estimate of
the algebraic error due to incomplete system convergence, and is seldom enforced. The end result is that, as in the case
of temporal resolution, some predetermined constant convergence limit is set based purely on engineering judgment
such that the resulting solution has acceptably low overall error at practical computational expense. It is quite possible
that the equations converged to limits set by such ad-hoc methods could result in unnecessarily restrictive convergence
in some regions of the time domain and insufficient convergence in others. Under most circumstances the effect or
error due to insufficient convergence becomes difficult to quantify and even harder to remedy.

This paper presents a novel approach for estimating the error in a scalar output computed as a function of the
unsteady flow solution, and the distribution of this error in the time domain. The contributions to the total error are
distinctly identified as arising from the two primary sources, namely the temporal resolution and the effect of partial
convergence of the equations at each time step. Additional separation of the error into flow and mesh components pro-
vides the criteria necessary to target specifically the set of governing equations that influences the functional output the
most. This is uniquely different from common adaptation or time-step control schemes which are based on estimates
of the local temporal error at each time step, in that we estimate and adapt based on the global temporal error on the

∗Graduate Student, AIAA Member; email: kmani@uwyo.edu.
†Professor, AIAA Associate Fellow; email: mavripl@uwyo.edu.

1 of 24

final solution objective. The primary mechanism used for this purpose is the application of time dependent discrete
adjoint equations on a Taylor expansion of the scalar functional.

The total error incurred in time dependent simulations can be broken down into spatial error, temporal error, and
algebraic error. For steady-state problems, adjoint methods have been used successfully to drive adaptive mesh re-
finement schemes for reducing the spatial discretization error for output functionals of interest.3–6 For time dependent
solutions, the use of adaptive mesh refinement techniques requires the construction of a new refined mesh at each time
step, which results in discontinuous processes in time, as new grid points are added and deleted between time steps.
While the full error reduction and control problem for time dependent problems must involve simultaneous adaptation
in time and in space, the current work is restricted to adaptation in the time domain, in order to reduce temporal error,
with no attempt to reduce spatial discretization error. However, algebraic error due to incomplete convergence of the
governing equations at each time step is also targeted in this work.

Much work has been done on temporal adaptation and error control in the absence of spatial adaptation, particularly
for ordinary differential equations.7, 8 The most common approach consists of using local temporal error estimation
to drive time-step size selection, where the temporal error at a given time step is estimated by discretizing the time
derivative with different orders of accuracy and comparing the corresponding results.9 Also, such methods implicitly
assume that any solutions obtained are numerically exact, or at least converged to levels below the local temporal
discretization error, and do not consider the effect of partially converged solutions. While local error estimation
has been used successfully for temporal refinement, a more appealing approach would be one that targets the global
temporal error for an objective of interest directly, since for any particular objective, there is no guarantee that a
gradient based or any other local error based adaptation of the time domain would necessarily lead to an improved
estimate of the objective. As in the case of spatial error estimation, this arises from the fact that there may be little
or no correlation between the flow solution gradients in the time domain and the scalar objective of interest. If direct
information such as the sensitivity of the objective to the solution at each time interval, which in turn is a function
of the time-step size and convergence criterion at that interval were available, a more targeted and efficient time
adaptation scheme can be developed. While adjoint methods have been used in the spatial domain for goal oriented
error estimation and control, their use in the time domain has mostly been confined to simpler problems such as those
involving ordinary differential equations.10–12

In this paper, we apply time-dependent adjoint-based techniques for targeting and reducing directly the global
temporal error for engineering functional outputs of unsteady flow simulations with dynamically deforming meshes.
The work presented in this paper is a direct result of recent advances made in solving discrete adjoint equations in
unsteady flow problems with dynamic meshes for the purpose of determining sensitivities used in shape optimization.13

This unsteady adjoint solution procedure forms the basis for computing derivatives in the linearization of the objective
in the time domain. Also, the developed algorithm imposes no restrictions on the temporal evaluation of the scalar
objective. The scalar objective may be defined as a function of the flow solution only at the end of the time-integration
process or be a time-integrated quantity by itself.

In steady problems, intuitive estimates may be made to determine regions in the spatial domain that would most
likely affect a scalar functional quantity of interest. For example, the computation of drag on an airfoil intuitively re-
quires added resolution near the surface of the airfoil for accurate drag values. The process is far more difficult to apply
when extended to time dependent flows. The local temporal error from a particular region in the time domain could
either have a large or small impact on objective accuracy, and possibly completely counter to intuition. Additionally, it
would appear to be practically impossible to apply intuition for the separation of two sources of error, namely temporal
discretization effects and algebraic error effects due to incomplete system convergence. The algorithm presented in
the paper provides a straightforward method for determining not only the total temporal error that is relevant to the
scalar functional, but also for decomposing it into time resolution and partial convergence components, and within
each component for identifying quantitatively the contributions from the flow equations and the mesh equations, all in
a cost effective manner.

II. Governing Equations of the Flow Problem in ALE Form

The conservative form of the Euler equations is used in solving the flow problem. The paper is limited to inviscid
flow problems since the primary focus is the development and validation of a global temporal error estimation proce-
dure. Extension of the algorithm to viscous flow problems with the inclusion of turbulence models should prove to be
straightforward. The differences arise only in the linearization of the additional flux contributions and not in the base

2 of 24

formulation presented in the paper. In vectorial form the conservative form of the Euler equations may be written as:

∂U(x, t)
∂t

+∇ ·F(U) = 0 (1)

Applying the divergence theorem and integrating over a moving control volume A(t) yields:Z
A(t)

∂U
∂t

dA+
Z

dB(t)
F(U) ·ndB = 0 (2)

Using the differential identity:

∂

∂t

Z
A(t)

UdA =
Z

A(t)

∂U
∂t

dA+
Z

dB(t)
U(ẋ ·n)dB (3)

equation (2) is rewritten as:
∂

∂t

Z
A(t)

UdA+
Z

dB(t)
[F(U)− ẋU] ·ndB = 0 (4)

or when considering cell-averaged values for the state U and integrating over the entire time domain as:Z T

0

∂AU
∂t

dt +
Z T

0

Z
dB(t)

[F(U)− ẋU] ·ndBdt = 0 (5)

This is the Arbitrary-Lagrangian-Eulerian (ALE) finite-volume form of the Euler equations. The equations are required
in ALE form since the problem involves deforming meshes where mesh elements change in shape and size at each
time-step. Here A refers to the area of the control volume, ẋ is the vector of mesh face or edge velocities, and n is
the unit normal of the face or edge. The state vector U of conserved variables and the cartesian inviscid flux vector
F = (Fx,Fy) are:

U =


ρ

ρu
ρv
Et

 , Fx =


ρu

ρu2 + p
ρuv

u(Et + p)

 , Fy =


ρv

ρuv
ρv2 + p

v(Et + p)

 , (6)

Here ρ is the fluid density, (u,v) are the cartesian fluid velocity components, p is the pressure and Et is the total energy.
For an ideal gas, the equation of state relates the pressure to total energy by:

p = (γ−1)
[

Et −
1
2

ρ(u2 + v2)
]

(7)

where γ = 1.4 is the ratio of specific heats.

III. Mesh Motion Strategy

The deformation of the mesh is achieved through the linear tension spring analogy which approximates the mesh
as a network of inter-connected springs. The spring coefficient is taken to be inversely proportional to the edge length.
Two independent force balance equations are formulated for each node based on displacements of neighbors. This
results in a nearest neighbor stencil for the final linear system to be solved. The stiffness matrix [K] is a sparse block
matrix based on the initial configuration of the mesh and remains unchanged through the time-integration process.
The linear system in equation (8) relates the interior vertex displacements in the mesh to known displacements on the
boundaries.

[K]δxint = δxsur f (8)

For each node in the mesh, the displacement can be solved as:

δxinti =
δxsur fi −∑

n j
j=1 [O]i jδxj

[D]i
(9)

3 of 24

where the off-diagonal term [O]i j and diagonal term [D]i are 2×2 diagonal matrices as follows:

[O]i j =−ki j[I] (10)

[D]i =
n j

∑
j=1

ki j[I] (11)

The mesh motion equations are elliptic in nature and can be solved using conventional smoothers such as Jacobi or
Gauss-Seidel iterations. The convergence of the system is a function of the mesh resolution and becomes prohibitively
expensive as the mesh resolution is increased, since the mesh motion equations have to be solved at each time step once
for the flow solution and once for the sensitivity computation. An agglomeration multigrid approach is used to speed
up convergence of the linear system. Being elliptic in nature the system is particularly well suited for acceleration
using multigrid.

IV. The Discrete Geometric Conservation Law (GCL)

The discrete geometric conservation law (or GCL) requires that a uniform flow field be preserved when equation (4)
is integrated in time. In other words the motion or deformation of the computational mesh should not introduce
conservation errors in the solution of the flow problem. This translates into U =constant being an exact solution of
equation (4). For a conservative scheme, the integral of the inviscid fluxes around a closed contour goes to zero when
U =constant. Applying these conditions to equation (4) results in the mathematical description of the GCL as stated
below:

∂A
∂t

−
Z

∂Ω(t)
ẋ ·ndΩ = 0 (12)

Equation (12) implies that change in area(volume in 3D) of a control volume should be equal to the area(volume
in 3D) swept by the boundary of the control volume. The vector of cartesian edge velocities ẋ for each of the edges
encompassing the control volume must therefore be chosen such that equation (12) is satisfied. There are many
different methods to compute the edge velocities while satisfying the GCL, but while it has been shown that satisfying
the GCL is essential for non-linear stability, it is not a sufficient condition to achieve the underlying accuracy of the
chosen time-integration scheme .14 A GCL formulation has been specifically derived for first, second and third order
backward difference (BDF) time-integration schemes and also for higher-order accurate implicit Runge-Kutta schemes
in Ref.,15 and this form is used exclusively in this work.

V. Convergence Acceleration using Linear Multigrid

A linear geometric agglomeration multigrid strategy16 is used to accelerate convergence of all the linear systems
encountered in the solution process, be either, the flow, mesh motion, flow adjoint or the mesh adjoint equations. The
linear multigrid method uses a correction scheme where coarser levels recursively provide corrections to the fine grid
solution. The coarse level meshes are built by repeated agglomeration or merging of neighboring control volumes to
form a single control volume. The subscripts or superscripts H and h in this section refer to coarse and fine mesh
levels in the spatial domain.

Consider a linear system developed by discretizing and linearizing a non-linear equation on the fine level mesh.

[A]hxh = bh (13)

We can obtain an approximate solution to the linear system using conventional iterative methods such as Jacobi or
Gauss-Seidel iterations. The residual of the linear system can then written as:

[A]hx̄h−bh = rh (14)

where x̄h is the approximate solution to the linear system. Let us define a correction x′h to the approximate solution
such that the residual of the linear system on the fine level mesh goes to zero.

xh = x̄h +x′h (15)

4 of 24

By taking the difference between the correction equation and the residual equation on the fine mesh we obtain a new
linear system as:

[A]hx′h =−rh (16)

We now transfer this equation to a coarse level to form a coarse level correction equation:

[A]Hx′h =−IH
h rh (17)

where the subscript H refers to the coarse level and IH
h is the fine to coarse level restriction operator. This system can

now be iteratively solved approximately or exactly if H is coarse enough. If H is not coarse enough a new approximate
solution is obtained and the residual of this system is then transferred to a coarser level. This process is repeated until
H is coarse enough to obtain a numerically exact solution to the system. The exact or approximate solutions obtained
from the coarse levels are used to correct the fine grid solution as

x̄new
h = x̄h + Ih

Hx′H (18)

where Ih
H refers to the coarse to fine grid prolongation operator. For our purposes, we use summation of parent residuals

as the restriction operator for the right hand side of the linear system. For the flow problem, the coefficient matrix [A]H
(which is the flow Jacobian matrix) for the coarse levels are constructed by first restricting the fine level flow solution
through a parent element area weighted approach, and then using the restricted flow solution to build the flow Jacobian
matrix. In the case of mesh motion, we use summation of the edge spring coefficients as the restriction operator to
construct the coarse level stiffness matrix [K]H . For all cases we use direct injection of coarse level corrections into
parent elements as the prolongation operator.

VI. Error due to Temporal Resolution

A. Objective formulation and linearization with respect to time resolution

Consider an objective that is either a function of the flow solution and mesh coordinates at the end of the time-
integration process or a time-integrated quantity that is dependent on the flow solution and mesh coordinates at each
time step. Mathematically this may be represented as L = L(U,x) where L is the generic scalar objective function, U is
the set of all flow solutions in the time domain and x is the set of all spatial meshes in the time domain. The objective
evaluated on a fine resolution time domain is represented by Lh(Uh,xh) and the same function evaluated on a coarser
time domain is represented by LH(UH ,xH). From this point onward, H refers to the coarse time domain and h refers to
the fine resolution time domain (as opposed to the previous use of this notation for the coarse and fine spatial domains).
We can estimate a value for Lh on the fine time domain without solving the flow equations on the fine domain by first
projecting the coarse solution UH and the coarse time domain mesh coordinates xH onto the fine time domain and then
constructing the objective based on these projections as Lh = Lh(Uh

h ,xH
h). Here UH

h and xH
h represent the coarse time

domain solution and the coarse time domain mesh coordinates projected onto the fine resolution time domain. For the
purposes of the derivation presented in this section we shall assume that the coarse time domain flow solution UH and
the coarse time domain mesh coordinates xH have been obtained via full convergence of the respective equations. The
Taylor series expansion of the exact fine time domain objective about the estimate Lh(UH

h ,xH
h) can then be expressed

as:

Lh(Uh,xh) = Lh(UH
h ,xH

h)+
[

∂L
∂U

]
UH

h ,xH
h

(
Uh−UH

h
)
+

[
∂L
∂x

]
xH

h ,UH
h

(
xh− xH

h
)
+ · · · (19)

The vectors [∂L/∂U]UH
h ,xH

h
and [∂L/∂x]xH

h ,UH
h

are the sensitivities of the fine objective function Lh with respect to

the fine solution Uh and fine mesh coordinates xh evaluated using UH
h and xH

h which are the coarse solution and mesh
coordinates projected onto the fine time domain. The differences

(
Uh−UH

h

)
and

(
xh− xH

h

)
represent the error between

the exact values of Uh and xh, which would be obtained by solving the problem on the fine domain, against the values
projected onto fine time domain from the coarse domain. If nsteps is defined as the number of time steps in the time-
integration, and ncells and nnodes the number of elements and nodes in the spatial domain, then Uh, UH

h , xh and xH
h are

vectors of size [nsteps×1] where each of the elements in the vectors are by themselves a vector of size [ncells×1] for
the flow variables and vector of size [nnodes×1] for the mesh nodes. This indicates that [∂L/∂U]UH

h ,xH
h

is a vector of

5 of 24

size [1×nsteps], where each element in the vector is a again a vector of size [1×ncells]. The same argument applies
for the sensitivity to mesh coordinates. If the objective L is evaluated as a function of the solution and coordinates only
at the final time interval, then the vector of sensitivities of the objective to the solution and the vector of sensitivities
of the objective to the mesh coordinates are non-zero only at the final time interval.

The procedure for computing an unsteady solution involves obtaining the solution to the nonlinear residual operator
R(U,x) at each time interval. The nonlinear operator R(U,x) is constructed by some appropriate discretization of the
governing flow equations. For this work, a cell-centered finite-volume discretization of the Euler equations on an
unstructured triangular mesh is used. When the time derivative term in the Euler equations is based on a simple
first order backward difference formula (BDF1), the nonlinear residual is defined as Rn = Rn(Un,Un−1,xn,xn−1) = 0,
where n refers to the time index. The solution of the nonlinear system at each time interval is obtained using Newton
iterations of the form:

[
∂R(Uk)

∂Uk

]
δUk =−R(Uk,x) (20)

Uk+1 = Uk +δUk (21)
δUk → 0,Uk+1 = Un (22)

where the Jacobian is inverted (iteratively) using the linear multigrid algorithm. Expanding a fine time-domain residual
set about the coarse time domain set of residuals yields:

Rh(Uh,xh) = Rh(UH
h ,xH

h)+
[

∂R
∂U

]
UH

h ,xH
h

(
Uh−UH

h
)
+

[
∂R
∂x

]
xH

h ,UH
h

(
xh− xH

h
)
+ · · ·= 0 (23)

As in the case of the flow solution vectors, the vector Rh represents the set of all residuals in the discretized time
domain with each element in the vector representing the set of all residuals in the spatial domain for that time interval.
Along the same lines, the matrices [∂R/∂U] and [∂R/∂x] are block matrices consisting of the sensitivities of all the
residuals R in the time domain to the set of all solutions U and set of all mesh coordinates x in the time domain. Since
for a BDF1 time scheme, the residual Rn at time index n is a function of only the solutions and mesh coordinates
at time indices n and n− 1, the matrices [∂R/∂U] and [∂R/∂x] are nonzero at only two locations for each row (each
time interval) namely the diagonal and the immediate off-diagonal to the left. This is more clearly exemplified in
equations (24) (25).

[
∂R
∂U

]
=



. . .

.[
∂Rn−1

∂Un−2

] [
∂Rn−1

∂Un−1

][
∂Rn

∂Un−1

] [
∂Rn

∂Un

]

 (24)

[
∂R
∂x

]
=



. . .

.[
∂Rn−1

∂xn−2

] [
∂Rn−1

∂xn−1

][
∂Rn

∂xn−1

] [
∂Rn

∂xn

]

 (25)

Each diagonal element of the matrix in equation (24) is the flow Jacobian matrix used in the nonlinear solution process
at that time interval. Referring back to equation (23), since the nonlinear residual operator R must vanish for a con-
verged solution at each time interval, an estimate for the error vector (Uh−UH

h) at each time interval in equation (19)
can obtained by rearranging equation (23) as:

(
Uh−UH

h
)
≈−

[
∂R
∂U

]−1

UH
h ,xH

h

{
Rh(UH

h ,xH
h)+

[
∂R
∂x

]
xH

h ,UH
h

(
xh− xH

h
)}

(26)

6 of 24

It should be noted that this is merely an estimate for the error since higher-order terms in the Taylor expansion are
ignored. Substituting equation (26) into equation (19) results in:

Lh(Uh,xh)≈ Lh(UH
h ,xH

h)−
[

∂L
∂U

]
UH

h ,xH
h

[
∂R
∂U

]−1

UH
h ,xH

h

{
Rh(UH

h ,xH
h)+

[
∂R
∂x

]
xH

h ,UH
h

(
xh− xH

h
)}

+
[

∂L
∂x

]
xH

h ,UH
h

(
xh− xH

h
)

︸ ︷︷ ︸
εcc

(27)

Lh(Uh,xh) in equation (27) can be described as an estimate for the exact objective evaluated directly on the fine time
domain. Based on the derivation it is approximately equal to the sum of the objective evaluated on the fine time domain
using a projected solution and projected mesh coordinates from the coarse domain and a computable correction term
εcc.

B. Evaluation of temporal resolution error correction term εcc and decomposition into flow and mesh contri-
butions

The correction term εcc as defined in the previous subsection is:

εcc =−
[

∂L
∂U

]
UH

h ,xH
h

[
∂R
∂U

]−1

UH
h ,xH

h

{
Rh(UH

h ,xH
h)+

[
∂R
∂x

]
xH

h ,UH
h

(
xh− xH

h
)}

+
[

∂L
∂x

]
xH

h ,UH
h

(
xh− xH

h
)

(28)

Since computing, storing and inverting the flow Jacobian matrix is expensive, a flow adjoint variable ΛU is defined
to aid the evaluation procedure. The flow adjoint variable is defined as:

ΛU
T
h |UH

h xH
h

=−
[

∂L
∂U

]
UH

h ,xH
h

[
∂R
∂U

]−1

UH
h xH

h

(29)

Transposing and rearranging equation (29) yields[
∂Rh

∂Uh

]T

UH
h xH

h

ΛU h|UH
h ,xH

h
=−

[
∂L
∂U

]T

UH
h

(30)

The solution of equation (30) involves projecting the coarse time domain solution and mesh coordinates onto the fine
time domain, reconstructing the flow Jacobian matrices on the fine time domain and then solving for the flow adjoint.
Since the goal is to avoid direct solutions of any nature on the fine time domain, an approximation is used where
the adjoint is evaluated on the coarse time domain and then projected onto the fine domain. This circumvents the
expensive evaluations on the fine time domain. Equation (30) recast on the coarse time domain becomes:[

∂R
∂U

]T

UH ,xH

ΛU H =−
[

∂L
∂U

]T

UH ,xH

(31)

The coarse adjoint can then be projected onto to the fine domain as:

ΛU h = IH
h ΛU H (32)

where IH
h is some appropriate projection operator.

Given the structure of the matrix ∂R/∂U , the evaluation of the flow adjoint involves an integration backward in
time beginning at the final time step. This becomes clear by substituting equation (24) into equation (30) and rewriting
in the expanded form shown below.



.[
∂Rn−2

∂Un−2

]T [
∂Rn−1

∂Un−2

]T[
∂Rn−1

∂Un−1

]T [
∂Rn

∂Un−1

]T[
∂Rn

∂Un

]T




...

ΛU
n−2
H

ΛU
n−1
H

ΛU
n
H

 =−



...[
∂L

∂Un−2

]T[
∂L

∂Un−1

]T[
∂L

∂Un

]T


(33)

7 of 24

This system can be solved by (block) back-substitution, which corresponds to a backward integration in time. The
procedure begins at the final time step, by first obtaining the solution of the following linear system on the coarse time
domain. [

∂Rn

∂Un

]T

ΛU
n
H =−

[
∂L

∂Un

]T

(34)

The solutions of the adjoint at time indices n−1,n−2 and so forth cascading all the way to the first time index can be
obtained by solving linear systems of the form:[

∂Rn−1

∂Un−1

]T

ΛU
n−1
H =−

[
∂L

∂Un−1

]T

−
[

∂Rn

∂Un−1

]T

ΛU
n
H (35)

Once the vector of adjoint variables ΛU H is obtained the first contributions to the computed correction may be deter-
mined by projecting the flow adjoint onto the fine time domain and then evaluating a vector inner product as follows:

εcc1 = ΛU
H
h

T
Rh(UH

h ,xH
h) (36)

εcc1 represents the contribution from the flow equations to the error arising due to insufficient temporal mesh reso-
lution. The residual Rh(UH

h ,xH
h) is nonzero since it is computed using the projection of the coarse time domain flow

solution onto the fine time domain. Closer examination reveals that equation (36) is actually a summation of the vec-
tor inner products of the flow adjoint and the nonzero residual at each time step on fine time domain. The remaining
contributions to the total correction term may be written in combined form as:

εcc2 =

{
ΛU

T
h

[
∂Rh

∂xh

]
UH

h xH
h

+
[

∂Lh

∂xh

]
xH

h

}(
xh− xH

h
)

= λx
(
xh− xH

h
)

(37)

using the notation λx as shorthand for the large bracketed term in the middle of the above equation. We now define a
mesh residual equation G and write a Taylor expansion about its value on the coarse time domain as:

G(xint) = [K]δxint −δxsur f = 0 (38)

G(xh) = G(xH
h)+

[
∂G
∂x

]
xH

h

(xh− xH
h)+ · · ·= 0 (39)

Here the residual G(xH
h) is evaluated using the projected values for xint from the coarse time domain to the fine domain

and the exact values of xsur f on the fine time domain. The surface coordinates xsur f are only a function of time and can
be easily evaluated on the fine time domain. Rearranging and simplifying the mesh residual Taylor expansion yields:

(xh− xH
h) =−[K]−1G(xH

h) (40)

Substituting this back into equation (37) gives us an expression for the second and final correction term as:

εcc2 =−λxh [K]−1G(xH
h) (41)

Defining a mesh adjoint variable Λx permits an iterative solution and avoids inversion of the stiffness matrix:

[K]T Λxh =−λxh
T (42)

As in the case of flow adjoint variable, the above system is solved on the coarse time domain and the coarse mesh
adjoint then projected onto the fine time domain by some appropriate operator as:

[K]T ΛxH =−λxH
T (43)

Λxh = IH
h ΛxH (44)

A mesh adjoint vector must be solved for at each time step during the backward sweep in time. The stiffness matrix
[K] is actually a block diagonal matrix in time consisting of the constant spatial stiffness matrix [K] for each time step.
The final form for the correction term can now be expressed as:

εcc2 = Λx
H
h

T
G(xH

h) (45)

8 of 24

εcc2 represents the contribution of the mesh motion equations to error arising due to insufficient time resolution. Just
as in the case of the flow adjoint, equation (45) represents a summation of vector products of the mesh adjoint and
the mesh residual at each time interval. Although the mesh motion equations are linear, the resulting mesh coordinate
variations in time are not linear, since these are driven by the prescribed surface mesh displacements, which in our
following example are sinusoidal in time. This causes the mesh residual to be non-zero when computed on the fine
time domain using projected mesh coordinates from the coarse time domain.

The contribution to the total correction from each individual time step can be interpreted as the representation of the
error in the objective arising from that time interval. From the derivation it is clear that there are two distinct sources
of error, specifically the flow and the mesh that contribute to the total temporal resolution error. The resulting total
error distribution (εcc1 + εcc2)and can thus be conveniently used as the adaptation parameter for identifying regions
that require higher time resolution.

VII. Error due to Partial Convergence

A. Objective formulation and linearization with respect to partial convergence

Consider the solution of the problem on the coarse time domain. In the former sections we assumed that the solution
on the coarse time domain was obtained by full convergence of the flow and mesh motion equations. This translates
into the flow residual and the mesh residual equations evaluating to zero. Additionally, also consider the objective L
evaluated on the coarse time domain as a function of the fully converged solution. If the flow and mesh equations were
partially converged on the coarse time domain, the error resulting in the objective evaluated on the coarse time domain
may be linearly approximated as:

LH(UH ,xH)−LH(UH ,xH)≈
[

∂L
∂U

]
UH ,xH

(UH −UH)+
[

∂L
∂x

]
xH ,UH

(xH − xH) (46)

where UH and xH refer to the approximate values of the flow variables and mesh coordinates obtained through partial
convergence of the respective equations. If the residual equations were evaluated using partially converged solutions
then they would not be equal to zero. The Taylor expansions for the residual equations about the partially converged
values can be written as:

R(UH ,xH) = R(UH ,xH)+
[

∂R
∂U

]
UH ,xH

(UH −UH)+
[

∂R
∂x

]
xH ,UH

(xH − xH)+ · · ·= 0 (47)

G(xH) = G(xH)+
[

∂G
∂x

]
xH

(xH − xH)+ · · ·= 0 (48)

B. Decomposition of error due to partial convergence into flow and mesh components

The similarity between the current derivation and the derivation of the time resolution error in the former sections is
clear. Following the same procedure as the time resolution error derivation, we can obtain two contributions that add
up to the total error due to partial convergence as:

εcc1 = ΛU H
T R(UH ,xH) (49)

εcc2 = ΛxH
T G(xH) (50)

where the adjoint variables are solved for as:[
∂R
∂U

]T

UH ,xH

ΛU H = −
[

∂L
∂U

]T

UH ,xH

(51)

[K]T ΛxH = −λx
T
H (52)

λxH =

{
ΛU

T
H

[
∂R
∂x

]
UH ,xH

+
[

∂L
∂x

]
xH ,UH

}
(53)

Closer examination reveals that these systems are nearly identical to equations (31) and (43) with the only difference
being that all quantities are evaluated using the partially converged flow and mesh solutions, rather than the fully

9 of 24

converged values. In the case of the time resolution error, the adjoint variables were solved for on the coarse time
domain using the coarse time domain flow solution and mesh coordinates. These were then projected onto the fine
time domain and multiplied with the non-zero residuals constructed on the fine time domain. The residuals on the fine
time domain were non-zero due to the projection of the flow solution and mesh coordinates from the coarse to the fine
time domain. In the case of partial convergence, the adjoint variables do not have to be projected and are multiplied
with non-zero residuals on the coarse time domain. As described earlier, the residuals on the coarse time domain are
non-zero due to partial convergence.

Relaxing the assumption of fully converged coarse time domain solutions for the time resolution error does not
affect the error estimated by that procedure. The important realization is that the error computed as temporal resolution
error by relaxing this assumption includes the error due to the partial convergence of the flow and mesh equations on
the coarse time domain. The time resolution error in reality is blind to what solution is projected from the coarse
time domain, since our only enforcement in the derivation is that Rh(UH

h ,xH
h) = 0 which can also be enforced as

Rh(U
H
h ,xH

h) = 0. The error due to time resolution can be separated from the total error by subtraction of the error due
to partial convergence.

VIII. Implementation Details

Evaluation of the correction terms and the objective requires projections of the solution, mesh coordinates, flow
adjoint and mesh adjoint from the coarse time domain to the fine time domain. The fine resolution time domain is
constructed by dividing each time step in the coarse time domain by two, thus doubling the number of time steps.
A quintic spline of the time distribution of variables in the coarse time domain is used as the projection operator for
interpolation onto the fine domain. Since the the evaluation of the adjoint variables involves a backward integration
in time, the entire solution history is required a priori. It would be impractical to hold the solution history in memory
while the unsteady solution is evaluated for later use by the adjoint solver. The total process is broken down into four
separate parts in order to improve efficiency and lower the memory overhead. The flow solver integrates the governing
equations forward in time for a given temporal mesh and writes the flow variables to the hard drive on-the-fly. The
adjoint solver is then invoked which reads the unsteady flow solution from the hard drive and performs a backward
integration in time. The computed adjoint variables are also written to the hard drive on-the-fly by the adjoint solver
during the backward sweep. An interpolation program reads in the time history of the flow and adjoint variables from
the hard drive and uses a quintic spline construction in time to determine the projection onto the fine time domain. The
projected variables are again written to file. The final step is the actual error computation, where the projected variables
are read-in from file and the error computed. The error computation program also applies the adaptation criteria to
determine the new temporal mesh resolution and the new convergence thresholds. The most expensive aspect of the
process remains the unsteady flow solution, with a rough breakdown into individual costs as 70% flow solution, 25%
adjoint solution, 3% interpolation, and 2% error estimation and adaptation.

The adaptation procedure currently used is fairly straightforward where time intervals with resolution error higher
than the time-integrated average of the total resolution error distribution are adapted by subdividing into two time
steps. Similarly, time intervals where the convergence error is higher than the time-integrated average of the total con-
vergence error have their convergence thresholds scaled by some predetermined value. Although primitive in nature,
the adaptation procedure allows for equidistribution of error in the time domain. Once a fairly uniform distribution
of error in the time domain has been achieved, it indicates that further adaptation is not possible since the adaptation
algorithm would request uniform refinement in all regions of the time domain. This can be interpreted as having
achieved the near optimum distribution of time steps and convergence limits for the given combination of objective
function, flow conditions and initial time domain resolution.

IX. Validation

A. Test Case Description

The test case used to implement and verify the developed algorithm involves the computation of the lift coefficient on a
pitching transonic NACA0012 airfoil at some arbitrary point in the pitch cycle. The goal is to improve the estimate for
the lift coefficient using a combination of time step adaptation, convergence threshold adaptation, and inclusion of the
correction term which is the summation of the error distribution in time. The free-stream Mach number and mean angle
of attack were chosen to be M∞ = 0.825 and α0 = 0o. An amplitude of αmax = 5o and a reduced frequency of ω = 0.1
were selected to control the pitch cycle. The pivot point was chosen to be two chord lengths ahead of the leading

10 of 24

edge of the airfoil. The time domain extends from t = 0 and t = 31.4159 in non-dimensional time and corresponds
to a single period. The objective function i.e. the lift of the airfoil was chosen to be evaluated at the end of the
time-integration process. The initial time integration consisted of 8 uniformly distributed time steps of dt = 3.92699
each. For reference purposes, the exact lift coefficient was determined by performing the time integration with 16384
fully converged uniform time steps. Figure (1) shows the unstructured triangular mesh around a NACA0012 airfoil
that was used for all computations in the test case. Figures (2(a)) and (2(b)) show the time-variation of the lift through
the time domain of interest. The parameter that was monitored in order to establish convergence was the root-mean-
square average of the element residuals for the flow equations and the nodal residuals for the mesh motion equations.
Figure (3) illustrates a typical convergence history for the flow and mesh residuals at one time step of the simulation.
For this case, which employed a total of 16 time steps over the temporal domain, the flow residuals are reduced to
machine zero in 38 multigrid cycles, while the mesh motion residuals require 30 cycles to achieve full convergence.
The number of cycles required to acheive the partial convergence tolerances discussed in the subsequent section can
be inferred to some degree from these figures, although these convergence rates depend to some degree on the size
of the prescribed time step. The initial condition was determined by first solving the described unsteady problem
over one period starting with a steady state solution and then using the solution from the final iteration which also
corresponds to zero angle-of-attack during the pitch upstroke. We assume that the residuals, both flow and mesh at the
initial condition are always zero irrespective of the adaptation or refinement that occurs beyond the starting point.

B. Validation of Error Correction Terms

Before applying the adaptation algorithm, numerical experiments using the test case described above were run in order
to validate the correction terms. Although the ultimate goal of an adjoint error estimation technique is to quantify
the total objective error (with respect to the infinite resolution value), the formulation of these methods is based on
predicting a new value of the objective on a more accurate discretization, rather than the exact continuous value.
Therefore, in order to validate the correctness of the implementation, the predicted errors must be compared against
the errors obtained by recomputing the solution on the reference (refined) discretization rather than the exact values.

The first set of experiments (Case Set 1) consist of validating the correction computed for either partial convergence
of the mesh motion equations or the partial convergence of the flow equations, or the combined correction provided
for simultaneous partial convergence of the mesh motion and flow equations. The validation cases were designed
such that the effect of all error components except the one being validated in each case are removed. Particularly,
while validating partial convergence error estimates, the temporal resolution effects are removed by performing all
computations using the same temporal resolution. The description of each case is presented below.

1. Validation 1A (Error due to partial mesh convergence): This case validates the effect of only partially converg-
ing the mesh motion equations by removing the effects of all other error components. The test case was solved
on a time domain consisting of 16 uniformly spaced time steps by converging the flow equations to machine
precision, but converging the mesh motion equations only partially to a limit of 1E−3. The error predicted by
this computation was then compared against the exact error which was determined based on the fully converged
solutions of the mesh and flow equations on the same time domain, i.e 16 uniform steps. The results of this test
are shown in Table 1.

2. Validation 1B (Error due to partial flow convergence): The procedure employed for validating the error due
to partial convergence of the flow equations is similar to that of verifying the predicted error due to partial
mesh convergence. The test case was solved on the time domain consisting of 16 uniform time steps by fully
coverging the mesh motion equations to machine precision, but only partially converging the flow at each time
step to a limit of 0.8E−4. The predicted error was again compared against the exact error computed using the
solution based on fully converged mesh and flow equations at a temporal resolution of 16 time steps. The results
are shown in Table 1

3. Validation 1C (Error due to combined partial convergence of mesh and flow equations): As in the previous
two cases, the procedure remains identical, with the only difference being the partial convergence of both the
flow and mesh equations simultaneously to the previously prescribed limits rather than only one of the sets of
the governing equations. The reference was once again the error based on the fully converged flow and mesh
solution at 16 time steps. The results are shown in Table 1. It is interesting to note from Table 1 that partial
convergence of the mesh equations has little effect on the accuracy of the functional value at least for this
particular example.

11 of 24

Table 1. Validation of partial convergence correction terms

Description Functional value % Error % Predicted
vs. Target Error

Target functional - exact at 16 steps (fully converged) -0.28576836616489 - -
Partial mesh convergence at 16 steps with limit = 1e-3 (flow fully converged) -0.285995701438330 -0.0796 -0.0743

Corrected for partial mesh convergence -0.285783421090738 -0.0052 -
Partial flow convergence at 16 steps with limit = 0.8e-4 (fully converged mesh) -0.289033070451402 -1.142 -1.143

Corrected for partial flow convergence -0.285765384379180 0.001 -
Partial flow and mesh convergence at 16 steps (flow=0.8e-4,mesh=1e-3) -0.289270768414725 -1.226 -1.223

Corrected for partial flow and mesh convergence -0.285778143449756 -0.003

The second case (Case 2) validates the correction provided for temporal resolution error. The effect of partial
convergence is removed by employing full convergence to machine precision of all equations at all time levels.

1. Validation Case 2 (Error due to temporal resolution): The goal of this test case is to validate the temporal
resolution error correction term provided for a resolution scaling from 16 uniformly spaced time steps to 32
uniformly spaced time steps. The unsteady test case was solved on the coarse resolution time domain consisting
of 16 time steps and the error between this domain and the fine resolution domain consisting of 32 steps was
predicted. The predicted error was then compared against the exact error due to resolution which was computed
by solving the test case directly on the fine time domain consisting of 32 time steps. All equations were con-
verged to machine precision in order to remove the effect of partial convergence. The results from this case
are shown in Table 2. It should be noted that although the temporal resolution error can be further decomposed
into flow and mesh components for individual validation, this has not been done. In a practical sense, doing so
would translate into solving one set of governing equations (either flow or mesh) directly on the fine resolution
time domain and utilizing the results in the error estimation procedure for the remaining set of equations. The
individual components are always available, since the total temporal resolution error is assembled from the sum
of these individual components. In our work, we use only the total temporal resolution error for the purpose of
adapting the temporal resolution.

Table 2. Validation of temporal resolution correction term

Description Functional value % Error % Predicted
vs. Target Error

Target functional - exact at 32 steps (fully converged) -0.309957065250867 - -
Fully converged flow and mesh at 16 steps -0.285768366164898 +7.804 +7.463

Corrected for resolution from 16 to 32 steps -0.3089006774509025 +0.341 -

The advantage of the adjoint error estimation procedure described in this work is that it permits the identification
of the various sources of error, such as those due to partial convergence of the mesh motion or flow equations, and
those due to the effect of temporal discretization. However, for computational efficiency reasons it is not practical to
fully converge the flow or mesh motion equations or to compute solutions on the fine time discretization soley for error
estimation purposes. According to the formulation described in the previous section, only the error components due
to partial convergence, and due to the combined effect of partial convergence and temporal resolution can be obtained.
In order to isolate the error solely due to temporal resolution, the error due to partial convergence must be subtracted
from the combined error term, yielding an error estimate which corresponds to the effect of refining the time step
while converging the governing equations to machine precision. Ultimately, it is important to be able to isolate these
individual error components in order to be able to give the adaptation algorithm the ability to choose between increased
convergence tolerances or time step refinement (or both) at any location in time.

The first part of Case Set 3 validates the combined predicted error due to temporal resolution and partial conver-
gence, while the second part of Case Set 3 validates each individual component, which is the most crucial part of the
problem.

12 of 24

1. Validation Case 3A (Total error due to temporal resolution and partial convergence): The methodology em-
ployed for this validation is a loose combination of those described in the first two cases. The reference func-
tional was computed by solving the test case on 32 uniformly spaced time steps which represents the fine
resolution time domain combined with full convergence of the flow and mesh motion equations. The predicted
error was computed by solving the same problem on 16 time steps with partial convergence limits for both the
flow and mesh motion equations. The predicted total error therefore includes the effect of partially converging
the governing equations on the coarse time domain and also the effect of temporal resolution between 16 and 32
time steps. Table 3 shows the results of this validation case.

2. Validation Case 3B (Validation of individual error components within the total correction term): Since only the
total combined correction which includes both the partial convergence errors and the temporal resolution error
can be computed due to cost reasons, it is important that we separate individual error components and validate
their accuracy, since any adaptation performed is based on these individual estimates. The partial convergence
error on any particular temporal mesh resolution can be computed provided the solutions to the forward and
adjoint problems were obtained on that temporal resolution. For this particular case, we predict the total error
which is an estimate of the difference between the functional obtained directly on the fine resolution time
domain with full convergence of equations and the functional computed on the fine time domain using partially
converged solutions projected onto the fine time domain from the coarse time domain. Since the solutions to
both the forward and adjoint problems were obtained on the coarse time domain through partial convergence,
we can estimate the error due to partial convergence exactly. The temporal resolution error between 16 and 32
steps is then obtained by subtracting the partial convergence error at 16 steps from the total error. The total error
can be intepreted in the following manner for easy understanding. The solution at 16 steps needs to be corrected
for partial convergence and then the error in projecting this corrected solution onto the fine time domain is the
component of the total error that represents temporal resolution error. The results of this case are shown in
Table 4. The partial convergence errors shown in Table 4 were computed using exactly the same numbers as
those shown in Table 1 with the only difference being that the percentage error is computed against the exact
functional at 32 steps rather than 16 steps.

Table 3. Validation of total error correction term

Description Functional value % Error % Predicted
vs. Target Error

Target functional - exact at 32 steps (fully converged) -0.309957065250867 - -
Partially converged flow and mesh at 16 steps (flow = 0.8e-4, mesh = 1e-3) -0.289270768414725 +6.674 +6.562
Corrected for partial convergence and also resolution from 16 to 32 steps -0.3096094927905224 +0.112 -

Table 4. Validation of individual error correction terms for total correction case

Description % Predicted % Exact
Error Error

Predicted total error (partial convergence at 16 steps + resolution between 16 and 32 steps) +6.562 +6.674
Predicted mesh partial convergence error at 16 steps (referenced against exact functional at 32 steps) -0.0685 -0.0733
Predicted flow partial convergence error at 16 steps(referenced against exact functional at 32 steps) -1.054 -1.053

Predicted resolution error between 16 and 32 steps +7.684 +7.804

X. Results

If no information about the temporal error, either global or local were available, it would be intuitive to successively
double the resolution in time uniformly until functional scalar values of interest converge. This is equivalent to
performing a grid sensitivity study in the spatial domain where meshes are successively refined in a uniform manner
until mesh insensitivity is observed. This is typically done beforehand on a sample problem that is representative of
the real problem of interest. A reasonable resolution that provides the required accuracy in the solution is then chosen

13 of 24

from the results of study. All other problems that are represented by the sample problem are then solved using the
chosen time resolution. The goal of adapting the temporal resolution is to hone onto only the regions of the time
domain that are most relevant to the functional scalar of interest and target them for refinement. The reasoning is that
if such refinement were possible, then a solution of the required accuracy may be obtained with lesser cost. Once a
reasonable temporal distribution has been determined, it may be applied to similar problems to produce equivalent
results as uniform refinement but with significant cost savings. In order to be viable such a procedure must be able to
outperform uniform refinement of the resolution.

As in the case of validating the correction terms individually where the sum of the errors in time of each component
were validated, four different adaptation cases were run in order to test the validity of the error distributions of each
component. The designed test cases were:

1. Case A: Adaptation of temporal resolution only with full convergence of flow and mesh motion equations.

2. Case B: Adaptation of convergence limits with a fixed number of uniformly spaced time steps.

3. Case C: Adaptation of both temporal resolution and convergence limits utilizing separate time-integrated aver-
ages of each error component.

4. Case D: Adaptation of both temporal resolution and convergence limits utilizing the combined time-integrated
average of all error components.

For all four cases, the starting point consisted of 8 uniformly spaced time steps with a convergence limit of 5E−4 for
the flow equations and 1E−3 for the mesh equations. The complete adaptive procedure can be broken down into the
following steps:

1. Run flow solver with some initial uniform time step distribution and convergence limits to obtain an unsteady
flow and mesh motion solution. This is the solution set UH .

2. Run adjoint solver to obtain flow and mesh adjoint variables on the coarse time domain.

3. Interpolate flow solution, mesh coordinates, flow adjoint and mesh adjoint onto the fine time domain. The fine
time domain is constructed by subdividing each time step into two.

4. Use interpolated variables to estimate the total error distribution.

5. Compute error distribution due to partial convergence of flow and mesh motion equations.

6. Separate temporal resolution error distrubution from the total error distribution by subtracting partial conver-
gence error distribution.

7. Sum the total error distribution to obtain the correction term εcc.

8. Augment the scalar objective estimate Lh(UH
h) by adding the correction term εcc to get an estimate for Lh(Uh)

9. Compute time-integrated averages of individual error distributions (temporal resolution and partial conver-
gence).

10. Identify regions where temporal resolution error is greater than time-integrated mean of error and refine by di-
viding those time steps into two. Similarly, identify regions of insufficient convergence and tighten convergence
tolerance.

11. Keep repeating the procedure until the estimate Lh(Uh) stops changing, or the correction term reaches some
predetermined error tolerance.

14 of 24

A. Case A: Temporal Resolution Adaptation

Figures (4(a)) to (4(d)) show the results of adapting the temporal resolution. The starting resolution consists of 8
equally spaced time steps. The initial error in the functional value is roughly 30%. The convergence criterion for
both uniform refinement and adaptive refinement was set at machine zero in order to remove the influence of partial
convergence. During the initial stages of the adaptation, the uniform refinement of resolution performs similarly to
adaptive refinement. This is primarily because of the total cost involved in adaptive refinement which includes the
cost of not only the unsteady flow solution but also the cost of computing the adjoint, interpolating the solution and
estimating the error. The number of time steps however remains lower than that of uniform refinement. It should be
noted that at this point the difference in cost is irrelevant since the functional error remains above 10% for all cases.
As the adaptation proceeds, the selective refinement of the temporal resolution begins to perform better than uniform
refinement. It should be noted however, the inclusion of the computed correction always provides a better estimate of
the functional than uniform refinement. By the time the error in the functional reaches 1%, the performance scaling
between the adapted domain and the uniformly refined domain is roughly 1.5. When the functional value corrected by
the computed correction is taken into account, the scaling is roughly 3.5.

B. Case B: Convergence Limits Adaptation

This case was designed to study the effect of convergence of the flow and mesh motion equations on the overall
accuracy of the functional scalar. The test case consisted of 32 uniformly spaced time steps and starting convergence
limits of 5E−4 for the flow equations and 1E−3 for the mesh motion equations. Figures (5(a)) and (5(b)) show the
results from this case. The procedure that is equivalent to uniform refinement of the temporal resolution in this case
is the uniform tightening of the convergence tolerance. In this particular case, the convergence limit was tightened by
one order of magnitude per adaptive step. Such a rate allows for roughly ten adaptive cycles before uniform tightening
reaches machine precision. From the error plot it is clear that the initial error by itself is fairly low at 0.2%. The
adapted convergence curve in the absence of the computed correction term lies above the uniform refinement curve,
indicating that the adaptation procedure does not recover the substantial additional cost of having to compute an
adjoint solution. However, when the computed correction term is added to the objective value, the adaptive algorithm
outperforms the uniform convergence tolerance approach. Note that in reality, the cost of the adjoint solution will
be amortized over convergence error as well as temporal error estimation, and thus Figures (5(a)) and (5(b)) may
present a pessimistic viewpoint. Additionally, although the convergence of the flow and mesh motion equations is
relatively consistent as shown in Figures (3(a)) and (3(b)), more complicated cases often display convergence rates
which degrade as the convergence tolerances are tightened, a factor which will further improve the competitiveness of
this adaptive approach.

C. Case C: Combined Temporal Resolution and Convergence Limits Adaptation

The third case is that of adapting both the temporal resolution and the convergence limits. Within this case, compar-
isons were made against two separate reference curves. Both reference curves begin with a uniform resolution of 8 time
steps and are uniformly refined thereon by doubling the resolution at each adaptation cycle. The difference between
the two reference curves is that one begins with the flow and mesh convergence limits of 5E−4 and 1E−3 combined
with uniform tightening at each adaptation cycle, while the other is set to machine precision at all adaptation cycles
including the starting point. Figures (6(a)) through (6(d)) show the results for Case-C1 which is the comparison against
the reference curve with uniform resolution refinement and uniform convergence tolerance tightening. Although the
adapted curve without the correction costs about the same as uniform refinement, when combined with the correction
the adaptation provides on average a cost saving factor of 3. Referring to Figures (7(a)) through (7(d)), where the
comparison is made against the curve where uniform temporal refinement with convergence to machine precision is
employed, the average cost saving is nearly an order of magnitude. Figures (8) and (9) show the distribution of time
steps, the flow and mesh convergence limits, and the errors from various components. As the adaptive procedure
advances, the error distribution of these components becomes approximately equidistributed over the time steps, as
expected. On the other hand, the heterogeneity of the adapted convergence limits and time step values in the plots
confirm that intuition would be of limited use in selecting these values, even for a simple unsteady problem such as
this test case.

15 of 24

D. Case D: Overall Optimized Error Reduction and Control

In the previous example, although the temporal resolution and convergence tolerances were selected adaptively, these
were selected individually without regards for the relative contribution to the total error due to the various components
such as mesh motion convergence, flow convergence, and temporal resolution. In the final example, we formulate an
adaptive criteria that considers the relative magnitude of these different components at each time step and chooses the
most effective refinement strategy locally in order to reduce the total error. This is done by simply comparing each
individual error contribution at each time step versus the average error contribution for all time steps from all sources.
Thus, at any given location in time, the adaptation strategy may choose between tighter convergence tolerances on
the mesh equations, the flow equations, or a reduction in the time step size, or any combination of these individual
strategies. Furthermore, the computed error correction term is used to determine when the overall error has reached
the desired tolerance.

Figure (10) illustrates the initial and final convergence tolerances and time step distributions for this case. The
adaptive procedure was terminated after 5 cycles, when the computed error estimate of 0.3% was found to be lower
than the original prescribed error tolerance of 0.5%. Figure (10(e)) indicates that the mesh convergence tolerance in
the final solution remains relatively loose throughout most of the time domain, which is consistent with the previously
reported fact that the errors due to the partial convergence of the mesh motion equations are substantially smaller than
the other error sources in the computation. The principal effect of the adaptation is seen to be the reduction of the time
step size throughout large parts of the domain, with an accompanying but less pronounced tightening of the tolerance
of the flow equations at various locations in the temporal domain. Refering to Figure (11), we can infer that the
complete adaptation procedure required a total of 1038 cpu seconds, which compares favorably with a total of 2132
cpu seconds to obtain a result of similar accuracy with a fixed time step size of dt = 0.06136 and convergence criteria
of 1E−10 for the flow and mesh motion equations. Evidently, efficiency comparisons of this type depend strongly on
the convergence criteria and time step sizes used for the uniform refinement case. However, a principal advantage of
the adjoint-based error approach is that it provides an estimate of the remaining error in the solution as well as an
indication of the various sources of the error, whereas in the uniform refinement case, the levels of convergence and
time step sizes must simply be selected by experience.

XI. Conclusions

A method to determine temporal error in unsteady flows was developed and tested showing significant cost sav-
ing. The algorithm replaces the ambiguity and guess work typically involved in intuitive temporal adaptation with
a rigorous mathematical consistent procedure. Additionally, the method also accounts for the various sources of er-
ror, such as those due to partial convergence of the governing equations for the mesh motion equations and the flow
equations. Because global adjoint error estimation is relatively expensive, due to the need to compute an unsteady
adjoint solution which must be integrated in time, rapid convegence of the adaptive procedure is required to make
these techniques cost effective. Although at this preliminary stage we have used a first-order temporal discretization
and simple refinement criteria, in future work second or higher-order temporal schemes will be investigated, as well
as the use of more sophisticated adaptive criteria. Additionally, more agressive refinement schemes such as 4:1 time
step refinements may prove to be more cost effective, although this may require more accurate solution interpolation
techniques. On the other hand, the current approach provides not only an error estimate for the objective of interest,
but also a breakdown of the important contributing sources of error. In principle, this technique can be extended to
more complicated multiphysics simulations, where the overall error sources from various disciplines such as fluid flow,
structural analysis, or conjuguate heat transfer can be assessed, with implications for how best to deploy computational
resources for maximum error reduction impact.

Another area of interst concerns the combination of spatial and temporal adaptation for functional outputs. Con-
sidering the results demonstrated in this paper combined with existing work that has been done on spatial adaptation,
the machinery now exists to adapt both the spatial and time domains independently. The obvious path from this point
would be to address issues that arise from the coupling of spatial and temporal adaptation.

16 of 24

X

Y

0 0.5 1

-0.5

0

0.5

Figure 1. Unstructured mesh around NACA0012 airfoil used in computations

Angle of attack

C
L

-6 -4 -2 0 2 4 6
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Functional L (lift)
computed at this location

(a) Time variation of lift

Time

C
L

-5 0 5 10 15 20 25 30 35
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Functional L (lift)
computed at this location

(b) Lift hysteresis curve for sinusoidally pitching airfoil

Figure 2. Lift variation for test case

Multigrid cycles

E
rr

or

10 20 30 40
10-14

10-12

10-10

10-8

10-6

10-4

10-2

(a) Multigrid convergence of flow equations

Multigrid cycles

E
rr

or

5 10 15 20 25 30
10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

(b) Multigrid convergence of mesh equations

Figure 3. Typical convergence rates of governing equations

17 of 24

Time steps

E
rro

r

101 102 10310-1

100

101

102

Uniformly refined - fully converged
Adapted + correction
Adapted

(a) Functional error reduction with number of time steps

Cpu time

E
rro

r

102 103 10410-1

100

101

102

Uniformly refined - fully converged
Adapted + correction
Adapted

(b) Cost of functional error reduction

Time steps

F
un

ct
io

na
l-

L

101 102 103

-0.34

-0.32

-0.3

-0.28

-0.26

-0.24

-0.22

Uniformly refined - fully converged
Adapted + correction
Adapted
Exact

(c) Functional value convergence with number of time steps

Cpu time

F
un

ct
io

na
l-

L

102 103 104

-0.34

-0.32

-0.3

-0.28

-0.26

-0.24

-0.22

Uniformly refined - fully converged
Adapted + correction
Adapted
Exact

(d) Functional value convergence against cost

Figure 4. Case A: Adaptation of temporal resolution with full convergence of flow and mesh equations

Cpu time

F
un

ct
io

na
l-

L

-200 0 200 400 600 800
-0.311

-0.3108

-0.3106

-0.3104

-0.3102

-0.31

-0.3098

Uniform tightening
Adapted
Adapted + correction
Exact

(a) Functional value convergence

Cpu time

E
rr

or

0 200 400 600 800
10-11

10-9

10-7

10-5

10-3

10-1

Uniform tightening
Adapted
Adapted + correction

(b) Functional error reduction

Figure 5. Case B: Adaptation of flow and mesh convergence limits with 32 fixed uniform time steps

18 of 24

Time steps

E
rr

or

101 102 103

10-1

100

101

102

Uniform (resolution + convergence)
Adapted
Adapted + correction

(a) Functional error reduction with number time of steps

Cpu time
E

rr
or

101 102 103

10-1

100

101

102

Uniform (resolution + convergence)
Adapted
Adapted + correction

(b) Cost of functional error reduction

Time steps

F
un

ct
io

na
l-

L

101 102 103

-0.34

-0.32

-0.3

-0.28

-0.26

-0.24

-0.22

Uniform (resolution + convergence)
Adapted
Adapted + correction
Exact

(c) Functional value convergence with number of time steps

Cpu time

F
un

ct
io

na
l-

L

101 102 103

-0.34

-0.32

-0.3

-0.28

-0.26

-0.24

-0.22

Uniform (resolution + convergence)
Adapted
Adapted + correction
Exact

(d) Functional value convergence against cost

Figure 6. Case C1: Combined adaptation of temporal resolution and convergence limits compared against uniform refinement of temporal
resolution and uniform tightening of convergence limits

19 of 24

Time steps

E
rr

or

101 102 103

10-1

100

101

102

Uniformly refined + full convergence
Adapted
Adapted + correction

(a) Functional error reduction with number of time steps

Cpu time
E

rr
or

101 102 103

10-1

100

101

102

Uniformly refined + full convergence
Adapted
Adapted + correction

(b) Cost of functional error reduction

Time steps

F
un

ct
io

na
l-

L

101 102 103

-0.34

-0.32

-0.3

-0.28

-0.26

-0.24

-0.22

Uniformly refined + full convergence
Adapted
Adapted + correction
Exact

(c) Functional value convergence with number of time steps

Cpu time

F
un

ct
io

na
l-

L

101 102 103 104

-0.34

-0.32

-0.3

-0.28

-0.26

-0.24

-0.22

Uniformly refined + full convergence
Adapted
Adapted + correction
Exact

(d) Functional value convergence against cost

Figure 7. Case C2: Combined adaptation of temporal resolution and convergence limits compared against uniform refinement of temporal
resolution and fixed full convergence of flow and mesh equations

20 of 24

Time

F
lo

w
re

si
du

al
th

re
sh

o
ld

5 10 15 20 25 30
10-7

10-6

10-5

10-4

10-3

10-2

(a) flow limits at adaptation cycle = 0

Time

M
es

h
re

si
du

al
th

re
sh

ol
d

5 10 15 20 25 30
10-7

10-6

10-5

10-4

10-3

(b) mesh limits at adaptation cycle = 0

Time

d
t

5 10 15 20 25 30
-1

0

1

2

3

4

(c) dt distribution at adaptation cycle = 0

Time

F
lo

w
re

si
du

al
th

re
sh

o
ld

5 10 15 20 25 30
10-7

10-6

10-5

10-4

10-3

10-2

(d) flow limits at adaptation cycle = 2

Time

M
es

h
re

si
du

al
th

re
sh

ol
d

5 10 15 20 25 30
10-7

10-6

10-5

10-4

10-3

(e) mesh limits at adaptation cycle = 2

Time

d
t

5 10 15 20 25 30
-1

0

1

2

3

4

(f) dt distribution at adaptation cycle = 2

Time

F
lo

w
re

si
du

al
th

re
sh

o
ld

5 10 15 20 25 30
10-7

10-6

10-5

10-4

10-3

10-2

(g) flow limits at adaptation cycle = 5

Time

M
es

h
re

si
du

al
th

re
sh

ol
d

5 10 15 20 25 30
10-7

10-6

10-5

10-4

10-3

(h) mesh limits at adaptation cycle = 5

Time

d
t

5 10 15 20 25 30
-1

0

1

2

3

4

(i) dt distribution at adaptation cycle = 5

Time

F
lo

w
re

si
du

al
th

re
sh

o
ld

5 10 15 20 25 30
10-7

10-6

10-5

10-4

10-3

10-2

(j) flow limits at adaptation cycle = 8

Time

M
es

h
re

si
du

al
th

re
sh

ol
d

5 10 15 20 25 30
10-7

10-6

10-5

10-4

10-3

(k) mesh limits at adaptation cycle = 8

Time

d
t

5 10 15 20 25 30
-1

0

1

2

3

4

(l) dt distribution at adaptation cycle = 8

Time

F
lo

w
re

si
du

al
th

re
sh

o
ld

5 10 15 20 25 30
10-7

10-6

10-5

10-4

10-3

10-2

(m) flow limits at adaptation cycle = 10

Time

M
es

h
re

si
du

al
th

re
sh

ol
d

5 10 15 20 25 30
10-7

10-6

10-5

10-4

10-3

(n) mesh limits at adaptation cycle = 10

Time

d
t

5 10 15 20 25 30
-1

0

1

2

3

4

(o) dt distribution at adaptation cycle = 10

Figure 8. Time step and convergence limit distribution for Case C1

21 of 24

Time

E
rr

or

0 5 10 15 20 25 30
10-7

10-6

10-5

10-4

10-3

10-2

10-1

(a) flow conv. error at adaptation cycle = 0

Time

E
rr

or

5 10 15 20 25 30

10-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

(b) mesh conv. error at adaptation cycle = 0

Time

E
rr

or

0 5 10 15 20 25 30
10-7

10-6

10-5

10-4

10-3

10-2

10-1

(c) resolution error at adaptation cycle=0

Time

E
rr

or

0 5 10 15 20 25 30
10-7

10-6

10-5

10-4

10-3

10-2

10-1

(d) flow conv. error at adaptation cycle = 2

Time

E
rr

or

5 10 15 20 25 30

10-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

(e) mesh conv. error at adaptation cycle = 2

Time

E
rr

or

0 5 10 15 20 25 30
10-7

10-6

10-5

10-4

10-3

10-2

10-1

(f) resolution error at adaptation cycle=2

Time

E
rr

or

0 5 10 15 20 25 30
10-7

10-6

10-5

10-4

10-3

10-2

10-1

(g) flow conv. error at adaptation cycle = 5

Time

E
rr

or

5 10 15 20 25 30

10-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

(h) mesh conv. error at adaptation cycle = 5

Time

E
rr

or

0 5 10 15 20 25 30
10-7

10-6

10-5

10-4

10-3

10-2

10-1

(i) resolution error at adaptation cycle=5

Time

E
rr

or

0 5 10 15 20 25 30
10-7

10-6

10-5

10-4

10-3

10-2

10-1

(j) flow conv. error at adaptation cycle = 8

Time

E
rr

or

5 10 15 20 25 30

10-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

(k) mesh conv. error at adaptation cycle = 8

Time

E
rr

or

0 5 10 15 20 25 30
10-7

10-6

10-5

10-4

10-3

10-2

10-1

(l) resolution error at adaptation cycle=8

Time

E
rr

or

0 5 10 15 20 25 30
10-7

10-6

10-5

10-4

10-3

10-2

10-1

(m) flow conv. error at adaptation cycle = 10

Time

E
rr

or

5 10 15 20 25 30

10-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

(n) mesh conv. error at adaptation cycle = 10

Time

E
rr

or

0 5 10 15 20 25 30
10-7

10-6

10-5

10-4

10-3

10-2

10-1

(o) resolution error at adaptation cycle=10

Figure 9. Resolution and partial convergence error distributions for Case C1

22 of 24

Time

F
lo

w
re

si
du

al
th

re
sh

o
ld

0 5 10 15 20 25 30
10-7

10-6

10-5

10-4

(a) flow limits at adaptation cycle = 0

Time

M
es

h
re

si
du

al
th

re
sh

ol
d

5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

101

(b) mesh limits at adaptation cycle = 0

Time

d
t

5 10 15 20 25 30
0

1

2

3

4

(c) dt distribution at adaptation cycle = 0

Time

F
lo

w
re

si
du

al
th

re
sh

o
ld

0 5 10 15 20 25 30
10-7

10-6

10-5

10-4

(d) flow limits at adaptation cycle = 5

Time

M
es

h
re

si
du

al
th

re
sh

ol
d

5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

101

(e) mesh limits at adaptation cycle = 5

Time

d
t

5 10 15 20 25 30
0

1

2

3

4

(f) dt distribution at adaptation cycle = 5

Figure 10. Time step and convergence limit distribution for Case D

Cpu time

E
rr

or

101 102 10310-1

100

101

102

Adapted + correction
Uniform (resolution + convergence)
Prescribed error tolerance

Figure 11. Comparison of efficiency in error reduction for Case D

23 of 24

References
1Carpenter, M. H., Viken, S., and Nielsen, E., “The Efficiency of High-Order Temporal Schemes,” AIAA Paper 2003-0086.
2Johnson, C., “Error Estimates and Adaptive Time Step Control for a Class of One-Step Methods for Stiff Ordinary Differential Equations,”

SIAM Journal of Numerical Analysis, Vol. 25, 1988, pp. 908–926.
3Vendetti, D. and Darmofal, D., “Grid Adaptation for Functional Outputs: Application to Two-Dimensional Inviscid Flows,” Journal of

Computational Physics, Vol. 176, 2002, pp. 40–69.
4Vendetti, D. and Darmofal, D., “Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows,” Journal

of Computational Physics, Vol. 187, 2003, pp. 22–46.
5Giles, M. B. and Suli, E., “Adjoint Methods for PDEs: a posteriori error analysis and postprocessing by duality,” Acta Numerica, 2002,

pp. 145–236.
6Houston, P., Rannacher, R., and Suli, E., “A posteriori error analysis for stabilized finite-element approximations of transport problems,”

Comput. Methods Appl. Mech. Engr., Vol. 190, 2000, pp. 1483–1508.
7Butcher, J. C., Numerical methods for ordinary differential equations, Wiley, Chicester, UK, 2003.
8Lambert, J. D., Numerical methods for ordinary differential systems, Wiley, Chicester, UK, 1991.
9Hindmarsh, A. C. and Taylor, A. G., “PVODE and KINSOL: Parallel software for differential and nonlinear systems,” UCRL–ID–129739,

Lawrence Livermore National Laboratory.
10Estep, D., “A Posteriori Error Bounds and Global Error Control for Approximation of Ordinary Differential Equations,” SIAM Journal of

Numerical Analysis, Vol. 32, 1995, pp. 1–48.
11Cao, Y. and Petzold, L., “A Posteriori Error Estimation and Global Error Control for Ordinary Differential Equations by the Adjoint Method,”

SIAM J. Scientific Computing, Vol. 26, No. 2, 2004, pp. 359–374.
12Li, S. and Petzold, L., “Adjoint Sensitivity Analysis for Time-Dependent Partial Differential Equations with Adaptive Mesh Refinement,”

Journal of Computational Physics, Vol. 198, No. 1, 2004, pp. 310–325.
13Mani, K. and Mavriplis, D. J., “An Unsteady Discrete Adjoint Formulation for Two-Dimensional Flow Problems with Deforming Meshes,”

45th Aerospace Sciences Meeting and Exhibit, Reno NV , 2007, AIAA Paper 2007–0060.
14Farhat, C., Geuzaine, P., and Crandmont, C., “The Discrete Geometric Conservation Law and the Nonlinear Stability of ALE Schemes for

the Solution of Flow Problems on Moving Grids,” Journal of Computational Physics, Vol. 174, 2001, pp. 669–694.
15Mavriplis, D. and Yang, Z., “Construction of the discrete geometric conservation law for high-order time-accurate simulations on dynamic

meshes,” Journal of Computational Physics, Vol. 213, 2006, pp. 557–573.
16Mavriplis, D., “Mulgtigrid Techniques for Unstructured Meshes,” Notes prepared for 26th Computational Fluid Dynamics Lecture Series

Program of the von Karman Institute of Fluid Dynamics, Rhode St Genese, Belgium, 1995.

24 of 24

	I Introduction
	II Governing Equations of the Flow Problem in ALE Form
	III Mesh Motion Strategy
	IV The Discrete Geometric Conservation Law (GCL)
	V Convergence Acceleration using Linear Multigrid
	VI Error due to Temporal Resolution
	A Objective formulation and linearization with respect to time resolution
	B Evaluation of temporal resolution error correction term cc and decomposition into flow and mesh contributions

	VII Error due to Partial Convergence
	A Objective formulation and linearization with respect to partial convergence
	B Decomposition of error due to partial convergence into flow and mesh components

	VIII Implementation Details
	IX Validation
	A Test Case Description
	B Validation of Error Correction Terms

	X Results
	A Case A: Temporal Resolution Adaptation
	B Case B: Convergence Limits Adaptation
	C Case C: Combined Temporal Resolution and Convergence Limits Adaptation
	D Case D: Overall Optimized Error Reduction and Control

	XI Conclusions

