Instructor: Jerry C. Hamann
Rm. 5036 Engineering, Phone 307-766-6321
email: hamann@uwyo.edu

Office Hours: MTWF 9:30 -- 10:30, MW 2:10 -- 3:00

Grading:
Midterm Exams 45%
Final Exam 25%
Homework 20%
Quizzes 10%
100%

Grade Breakpoints:
A ≥ 93, A- ≥ 90, B+ ≥ 87, B ≥ 83, B- ≥ 80, C+ ≥ 77,
C ≥ 70, D+ ≥ 67, D ≥ 60, 60 > F

Prerequisites: Students should have successfully completed MATH 2205 (Calculus II) and either MATH 2250 or 2310 (Linear Algebra or Applied Differential Equations I) and either COSC 1010 (Introduction to Computer Science I) or ES 1060 (Introduction to Engineering Problem Solving).

Course Description: Introduces students to the fundamentals of practical engineering programming, using specific applications of numerical methods to demonstrate these principles. An object-oriented approach using C++ in an efficient manner is emphasized. Other solution approaches, including C, Python and Matlab, are discussed as appropriate.

Quizzes/Exams: A brief quiz will be given in class each week. Examinations will be given in class on the days noted on the Course Schedule, unless circumstances dictate a change which will be announced in class. It is not possible to make up a missed quiz or exam without a University Excused Absence.

Assignments: Homework/programming assignments will be given on a near weekly basis, with due dates as shown on the Course Schedule. Assignments must be “turned in” by the assigned time, typically the start of class, on the specified due date. No credit will be given for late assignments. The tasks involved will include analytical mathematics, design and implementation of C++ programs, programmed computations, and generation of annotated graphical plots. Solutions to the assignments will be posted on the C++ Numerical Methods Course Site available through WyoCourses.

Points of Emphasis: Some points of emphasis which you must consider are as follows. . .

Don’t miss class. Attendance at every class is expected and monitored. Historically, missing one or more class sessions correlates very closely with receiving a failing semester grade. Contact your instructor prior to any missed lecture, he will try to talk you out of missing!

Start assignments early. Give yourself some time to consider the problems and determine whether or not you need instructor assistance. Last-minute questions are not a good idea. Start-to-finish time demands of assignments will vary from an hour to several hours and multiple debugging cycles.

Carefully read and follow all instructions. Electronic exchange of assignment solutions will be the norm in this course. You must strictly follow the folder and file naming and coding conventions requested in all assignments (including quizzes and exams, where appropriate). Don’t lose credit for failure to attend to simple things!

Don’t ignore attendance, assignments and quizzes. They comprise 30% of your grade.

Ask questions. This includes during class, during office hours, and via email.
Objectives: At the end of the semester, students will be able to:

- Prescribe algorithms for solving computational problems with pseudocode and flow charts which apply the following structured programming constructs: SEQUENCE, IF-THEN-ELSE, CASE, FOR, WHILE, and REPEAT-UNTIL.

- Demonstrate the correctness of algorithms via “hand” computation and graphical summary of solutions for baseline problems.

- Translate pseudocode and flow-chart algorithm specifications into modular, syntactically correct C++ code which conforms to a coding style guide and accurately computes solutions for baseline problems.

- Specify classes using UML diagrams to encapsulate data structures and frequent operations typical of scientific computations.

- Translate UML class diagrams into modular, syntactically correct C++ code which conforms to a coding style guide.

To accomplish these tasks, the student will be required to apply fundamental concepts from mathematics and engineering to formulate models which accurately represent a variety of problem domains. Design, construction and testing of the computational tools will require considerable time spent in algorithm development, authoring of syntactically and logically correct code, and validation of program-generated solutions.

Engineering Notebook Policies: To encourage student development of a personal, professional programming notebook, the quizzes and exams will be closed-book and closed-note with the exception of one reference: the student’s personal, bound engineering notebook. Specifications for an allowable notebook are as follows:

- Notebook format is permanent binding with no removable or fold-out pages, page dimensions not to exceed A4 in area.

- Outside cover and front inside cover page should clearly identify (1) student owner by name and contact info, (2) course by number and title, and (3) initial date of entries.

- Each internal page should be individually and consecutively numbered, beginning with a table of contents on, for example, pages 1 thru 4. Pages should be filled successively, dated and signed.

- All entries must be made in indelible ink or (in the case of computer printouts) be permanently afixed to each individual page. Corrections should be made with simple line-outs and dated.

- It is strongly recommended that two specific reference items be placed in the notebook: (1) a list of C++ reserved keywords, and (2) a list of C++ operators described in sorted order of operator precedence. This material is readily available for printing from the following website: http://en.cppreference.com/w/

Notebooks which do not satisfy the specifications given above may not be used on any quiz or exam (the use of such a notebook will be considered a breach of academic/professional honesty, resulting in zero credit and University Academic Dishonesty proceedings).

Policies Regarding Assignments / Collaboration / Academic Dishonesty: Students are encouraged to discuss course topics and assignments with one another. However, the assignment solutions, quizzes and exams turned in by each student must consist of that individual's own work. Failure to observe these expectations will result in sanctions as prescribed in University Regulation 6-802. Possible penalties include a grade of F for the course.

Disability Services: Students with a physical, learning or psychological disability requiring accommodations must register with and provide documentation to the University Disability Support Services (UDSS) in the Student Educational Opportunity Office, Knight Hall room 330. Please contact your course instructor as soon as possible to complete plans for providing accommodations.