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In this paper, the use of gradient observations in conjunction with surrogate models for
the purposes of uncertainty quantification within the context of viscous hypersonic flows
is examined. The approach is presented within the context of both perfect gas and non-
equilibrium real gas simulations and can be used to quantify the uncertainty in an output of
interest due to the uncertainty associated with various model and design parameters. The
gradient of an objective is calculated via a discrete adjoint approach. By using an adjoint
based approach, the sensitivity of an objective to a large number of input parameters
can be calculated in an efficient and timely manner. With these sensitivity derivatives,
the uncertainty in an objective due to input parameters is calculated in various ways.
Initially, first-order methods, such as the method of moments and linear extrapolation, are
used to represent the design space and calculate relevant output statistics. In order to
improve upon these first-order approaches, Kriging and gradient enhanced Kriging models
are created for the function space and serve as a basis for additional inexpensive Monte
Carlo sampling. The probability distribution functions and statistics generated by these
linear and Kriging based methods compare favorably with the results of nonlinear Monte
Carlo sampling and can serve as a basis for further exploration of uncertainty quantification
in hypersonic flows.

I. Introduction and Motivation

The increasing reliance on numerical simulation for the design and analysis of physical systems has lead
to a desire for uncertainty analysis in order to assess the quality of simulations and apply confidence bounds
to outputs. In particular, uncertainty quantification is especially important for problems in which validation
data is difficult or impossible to obtain, as is the case with hypersonic flows. The uncertainty in simulation
outputs can arise from various sources, such as measurement errors, modeling inadequacies,1 or manufac-
turing tolerances.2 Due to these factors, predicting a specific output for a given set of input parameters can
be insufficient and a distribution or interval bound of outputs based on the uncertainties inherent in the
simulation parameters is required. For hypersonic flows, Monte Carlo sampling is typically used to quantify
uncertainty in outputs of interest, requiring thousands of flow solves to collect the appropriate statistics.3,4

In order to reduce the computational cost of uncertainty quantification, gradient information can be lever-
aged to reduce the number of samples required or provide samples at reduced cost.5–8 Most notably, adjoint
methods may be used to provide the derivatives of a single output with respect to a large number of param-
eters with a cost approximately equal to the simulation of the physical problem.9–11 Hence, for problems
in which only a limited number of outputs are of interest, adjoint methods represent a powerful tool for
efficiently obtaining gradient information. For this work, a discrete adjoint formulation is used to compute
the gradient of objectives with respect to a wide variety of model and input parameters.

Using these gradients, a number of different methods may be employed to reduce the computational cost
associated with Monte Carlo sampling. These methods typically rely on creating an inexpensive surrogate
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model for the simulation and range in complexity from utilizing simple extrapolations between sample
points5,6 to more sophisticated surrogate models, such as least square polynomials, multi-layer perceptron,
radial basis functions (RBF), and Kriging. In particular, Kriging methods have gained popularity, especially
in the field of computational fluid dynamics.12–22 Due to the availability of efficient gradient evaluations,
gradient enhanced Kriging methods have been developed and have demonstrated favorable results.16,20,21

Once a surrogate of a simulation output is developed, the model may be sampled exhaustively to determine
the output distribution and associated statistics.

In order to analyze hypersonic flows, numerous constitutive relations are required, each of which has
a number of experimentally derived constants and parameters. These parameters are often the result of
experimental measurements and have an associated variability. In general, this variability will have contri-
butions from both aleatory and epistemic uncertainty. While aleatory uncertainty represents a variability
due to inherent randomness in the system, epistemic uncertainty represents a lack of knowledge about the
appropriate value to use for a quantity and is the dominant form of uncertainty encountered for hypersonic
flows.23,24 While a number of techniques exist for quantifying aleatory uncertainty, few are easily extended
to epistemic uncertainty. In spite of this difficulty, regulatory agencies and design teams are increasingly
being asked to specifically characterize and quantify epistemic uncertainty and separate its effect from that
of aleatory uncertainty.25 The goal of this work is to provide a framework in which both types of uncertainty
can be quantified at reduced cost.

Within this paper, the use of gradient information for uncertainty quantification will be demonstrated
for hypersonic flows. In Section II, details of the physical models and flow solver used for this work will be
presented. In Section III, an outline of the discrete adjoint implementation is given and sample sensitivity
results are given. Section IV provides details of the uncertainty quantification strategies proposed for this
work as well as an overview of the surrogate models employed in this paper. Finally, Sections V and VI
demonstrate the performance of the proposed uncertainty quantification strategies for a perfect gas and real
gas test problem.

II. Flow Problem

In this section, the physical models and flow solver used in this paper will be outlined. For this work, the
Navier-Stokes equations are solved numerically in two dimensions via a cell centered finite volume scheme
on unstructured meshes using triangular and/or quadrilateral elements. In vector form, the Navier-Stokes
equations are given by:

∂U

∂t
+∇ · ~F (U) = ∇ · ~Fv(U) + S(U) (1)

where U are the conserved flow variables, ~F is the inviscid flux, ~Fv is the viscous flux and S contains any
source terms required for the physical model, such as reaction or energy coupling terms. Both perfect gas and
non-equilibrium real gas physical models are examined for this work. The real gas model is the five species,
two temperature model for non-ionizing air.26 The Dunn-Kang model is used for the chemical kinetics
required for the chemical non-equilibrium. The specific heats are calculated via 4th order polynomial curve
fits covering various temperature ranges. The total enthalpy is calculated simply by integrating these curve
fits and incorporating the proper heat of formation information.27

Two transport models have been examined for this work. The first model considered is based upon curve
fits for species viscosity developed by Blottner et al28 and use a mixing rule due to Wilke29 to determine
bulk quantities. Species diffusion coefficients are determined using the bulk transport quantities and the
assumption of a constant Schmidt number across all species.26 For the second model, viscosity, thermal
conductivity and diffusion coefficients are calculated based on linear interpolation of collision integrals.27,30

The two phyiscal models considered in this work vary greatly in terms of complexity. For the perfect
gas model, the only physical relations required are the perfect gas equation of state and Sutherland’s law
for viscosity. When freestream conditions are included, a perfect gas problem requires ten dimensional
parameters to fully specify a flow problem. On the other hand, the real gas model has over 250 parameters
embedded within the constitutive models for the reaction rates, transport coefficients, relaxation times and
caloric equations of state.

In order to solve problems using the above two models, a two dimensional cell-centered finite volume
code was written. The governing equations described above are first discretized in space and the solution is
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advanced in time to steady state using a fully implicit approach. In semi-discrete form, the equations have
the following form:

∂U

∂t
+ R(U) = 0 (2)

The residual within each cell is given by the sum of the normal inviscid and viscous fluxes over all faces plus
a cell centered contribution due to source terms. The inviscid flux is calculated using gradient reconstruction
of primitive variables. The gradients are calculated using Green-Gauss contour integration over the cell. The
limiter used within this code is a combination of a pressure switch and smooth Van Albada limiter, inspired
by the experiences in references26,30 and.31 The LDFSS flux function is used due to the ease with which it
can be extended to additional equations. To extend this flux function to the real gas model, a frozen speed
of sound is used.31

The result of the spatial discretization outlined above is a system of coupled ODE’s which are solved
implicitly using a BDF1 discretization. The result of this temporal discretization is a system of nonlinear
equations which are solved using an inexact Newton’s method. This inexact method employs a number of
approximations to improve the performance of the nonlinear solver. Instead of solving the nonlinear system
exactly, a fixed number of Newton iterations are performed. Additionally, instead of inverting the exact
Jacobian, an approximate first-order Jacobian is used. Finally, in order to reduce the computational cost of
each Netwon iteration, the preconditioner and transport quantities are frozen.

The solver described previously was validating using the standard test case of 5 km/s flow over a circular
cylinder with a super-catalytic, fixed temperature wall. The conditions for this test case can be found in
Table 1. The results for this test case using the perfect gas and real gas model were compared against the
well-validated codes LAURA and FUN2D.32,33 The results for this benchmark are depicted in Figures 1 and
2.

Table 1. Benchmark flow conditions

V∞ = 5 km/s

ρ∞ = 0.001 kg/m3

T∞ = 200 K

Twall = 500 K

M∞ = 17.605

Re∞ = 376,930

Pr∞ = 0.72

Figure 1. Validation of solver for 5 km/s flow over circular cylinder using Perfect Gas Model. Left: Computed flow field
temperature contours. Middle: Comparison of Surface Pressure Distribution with LAURA34 and FUN2D 33 Right:
Comparison of Surface Heating Distribution

III. Adjoint Sensitivity Analysis

With the flow solver detailed, an outline of the sensitivity procedure used to calculate the gradient of
an objective is given. Further details of this adjoint implementation can be found in .35 To determine the
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Figure 2. Validation of solver for 5 km/s flow over circular cylinder. Left: Computed flow field temperature contours.
Middle: Comparison of temperatures along centerline with LAURA34 results running on equivalent mesh. Right:
Species mass fractions along centerline.

gradient, the code is differentiated piece by piece and the final sensitivity is constructed using the chain rule.
To illustrate this process, the following objective functional dependence is considered:

J = J(D,U(D)) (3)

In addition to this objective, a constraint is needed. For the steady problems considered in this work, the
constraint is that the spatial residual must equal zero.

R(D,U(D)) = 0 (4)

Both the constraint and the residual have an explicit dependence on the input parameters, or design variables
D, and an implicit dependence through the flow variables U. In order to determine the sensitivity derivative,
the objective can be differentiated using the chain rule as:36

dJ

dD
=
∂J

∂D
+
∂J

∂U

∂U

∂D
(5)

The constraint may be differentiated in a similar manner. In this case, the derivative is equal to zero as the
constraint must be satisfied for all admissible values of D and U:

∂R

∂D
+
∂R

∂U

∂U

∂D
= 0 (6)

Solving for ∂U
∂D in the above equation and substituting into the objective derivative gives the forward sensi-

tivity equation (also known as the tangent linear model).

dJ

dD
=
∂J

∂D
− ∂J

∂U

∂R

∂U

−1 ∂R

∂D
(7)

As the equation shows, the residual Jacobian must be inverted once for each design variable. However,
the same ∂U

∂D may be used for each objective J . Due to the expense associated with inverting the residual
Jacobian, the forward sensitivity approach is best suited for problems with few design variables and multiple
objectives.

The adjoint sensitivity equation is found by taking the transpose of the forward equation.

dJ

dD

T

=
∂J

∂D

T

− ∂R

∂D

T ∂R

∂U

−T ∂J

∂U

T

(8)

where the last two terms can be replaced by the adjoint variable Λ, defined as:

∂R

∂U

T

Λ = − ∂J
∂U

T

(9)

A sample adjoint solution for the 5km/s benchmark is found in Figure 3. This figure shows the adjoint
variable for surface heating associated with the density. The magnitude of this variable roughly represents
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the importance of the flow field on the objective of interest. As expected for surface heating, the adjoint
variable is largest near the surface of the cylinder. Using this definition of the flow adjoint, the final sensitivity
equation is given by:

dJ

dD
=
∂J

∂D
+ ΛT ∂R

∂D
(10)

Determining the solution of the flow adjoint equation roughly follows the procedure used to solve the
analysis problem. A simplified preconditioner matrix is used to advance the adjoint solution in a defect-
correction scheme.36 The effect of the exact Jacobian required for the defect-correction solver is built up
using automatically differentiated subroutines. The automatic differentiation used in this work is provided
by the Tapenade Automatic Differentiation Engine.37 Using this adjoint implementation, the sensitivity of
an objective to any number of parameters can be computed with a constant amount of work.

Figure 3. Density adjoint for integrated surface heating

To demonstrate the use of the adjoint, the sensitivities of surface heating with respect to parameters
governing the chemical kinetics model and transport coefficients were calculated and are presented for the
5km/s real gas benchmark. The objective used for these demonstration results is integrated surface heating,
given by the equation:

L = −
∫
∂Ω
k∇T · ~n+ kv∇Tv · ~ndA

1
2ρ∞V

3
∞

(11)

The first variables examined relate to the specification of reaction rates. For the Dunn-Kang chemical kinetics
model used within this work, the reaction rates take the following form:

Kf = CfT
ηf
a e−

Ea,f
kTa (12)

Kb = CbT
ηb
a e−

Ea,b
kTa (13)

where Ea,f and Ea,b represent the activation energy for the forward and backward reactions respectively, k
is Boltzmann’s constant and Ta is a characteristic temperature. The parameters examined in this case were
Cf and Cb for each reaction, giving a total of 34 parameters. Figure 4 depicts the computed sensitivity of
surface heating with respect to the forward and backward reaction rates using the adjoint procedure for the
5 km/s benchmark case. It should be noted that due to the large discrepancy between the design variable
and the objective, the sensitivity is expressed as fractional change in objective per fractional change in design

variable (i.e.
dL
L
dD
D

).35 As the results demonstrate, the reactions governing the production and breakdown of

NO, as well as the oxygen recombination reactions, have the greatest influence on integrated surface heating.
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In addition to reaction rates, the sensitivity with respect to parameters within the transport model was
calculated. For the Blottner model, the curve fit of species viscosity is of the form:

µs = 0.1e(Asln(T )+Bs)ln(T )+Cs (14)

Associated with each species are the parameters As,Bs, and Cs, giving a total of 15 parameters for the
transport model. The sensitivity due to the transport coefficients is depicted in Figure 5. From these results,
one can see that transport parameters seem to have a greater impact on surface heating, with the parameters
associated with N2 having the greatest individual contributions.

For the collision integral model, measured collision integrals between the five species at 2000 K and 4000
K are used and linear interpolation is used to determine the cross-section at the appropriate temperature.27

log10(Ωk,ks,r ) = log10(Ωk,ks,r )2000 +
[
log10(Ωk,ks,r )4000 − log10(Ωk,ks,r )2000

] ln(T )− ln(2000)

ln(4000)− ln(2000)
(15)

For the five species model, 15 independent collision interactions are possible. This fact gives a total of 60
parameters as two separate collision integrals (Ω1,1

s,r and Ω2,2
s,r) are used at each temperature. In reality, it is

likely that the uncertainty for the collision integrals measured at 2000K and 4000K are correlated. Due to
this assumption, the sensitivities with respect to only the collision integrals at 2000 K were calculated. The
results of this calculation are also presented in Figure 5. As the results show, the collisions involving N2
have the greatest effect on integrated surface heating. This result is unsurprising as N2 is the predominant
species at the super-catalytic wall boundary condition.

As mentioned previously, the uncertainties associated with input and model parameters encountered
within hypersonic problems are typically epistemic (i.e. the parameters are known to lie within a certain
range but the distribution within the interval is unknown). Methods assuming aleatory uncertainties, such
as polynomial chaos or simple Monte Carlo sampling, have likely underestimated the uncertainty associated
with simulation objectives.24,38 Although this work only provides a preliminary treatment of epistemic
uncertainty, the framework presented in this paper based on gradient observations and surrogate models
should provide a framework for exploring epistemic uncertainty quantification through either linear methods,
optimization based approaches or augmented sampling strategies.23,39

N
2

+
O

2
 D

is

N
2

+
N

O
 D

is

N
2

+
N

 D
is

N
2

+
O

 D
is

N
2

+
N

2
 D

is

O
2

+
O

2
 D

is

O
2

+
N

O
 D

is

O
2

+
N

 D
is

O
2

+
O

 D
is

O
2

+
N

2
 D

is

N
O

+
O

2
 D

is

N
O

+
N

O
 D

is

N
O

+
N

 D
is

N
O

+
O

 D
is

N
O

+
N

2
 D

is

N
O

 f
o

rm
at

io
n

N
O

 b
re

ak
d

o
w

n 

-2.00E-002

-1.00E-002

0.00E+000

1.00E-002

2.00E-002

3.00E-002

4.00E-002

Forward 
Backward

F
ra

ct
io

na
l S

en
si

tiv
ity

Figure 4. Sensitivity of surface heating with respect to forward and backward reaction rates.

IV. Uncertainty Quantification through Surrogate Models

The cornerstone of this approach is the construction of an inexpensive surrogate for the underlying
design space associated with the simulation output. In particular, linear surrogates and Kriging models are
considered. In order to reduce the computational cost associated with training the surrogate and provide
additional information, derivatives with respect to the design variables were calculated using the discrete
adjoint or the TLM depending on the dimension of the uncertainty space. A typical problem associated
with uncertainty quantification is the so-called “curse of dimensionality”, whereby the cost of quantifying
uncertainty increases rapidly with the number of inputs. To address this problem, two different strategies
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Figure 5. Left: Sensitivity of surface heating with respect to Blottner transport model parameters. Right: Sensitivity
with respect to Ω1,1

s,r at 2000 K

are proposed. First, only the uncertainty associated with input parameters greatly affecting the simulation
output, determined through a sensitivity analysis, are considered, reducing the dimension of the problem at
the outset. Second, the information gained at reduced cost through gradient observations will be exploited.
For example, the function and gradient provide M + 1 pieces of information for M inputs for the constant
cost of roughly two function evaluations if adjoint techniques are utilized. Due to this additional information,
the cost associated with representing the design space should be greatly reduced even as the dimension of
the problem is increased.

IV.A. Local Sensitivity Approaches

In this section, the use of the first-order sensitivity derivatives for rapid uncertainty quantification is explored.
As outlined previously, when a single simulation output is considered, the derivatives with respect to all input
parameters can be computed using a single discrete adjoint solution. Using these derivatives, the variation
of the objective throughout the design space is assumed to be linear. Hence, for these model, only a single
function and gradient evaluation is necessary. For relatively small input uncertainties, the statistics based
on these extrapolated values should approximate those based on the exact design space.

If one is only interested in the mean and standard deviation of an objective function, moment methods
can provide an inexpensive way of approximating these values.40,41 Moment methods are based on Taylor
series expansions of the original nonlinear objective function J(D) about the mean of the input D0 given
standard deviations σDj

. The resulting mean µJ and standard deviation σJ of the objective function are
given to first-order (MM1) by:

µ
(1)
J = J(D0)

σ
(1)
J =

√√√√ M∑
j=1

(
dJ

dDj

∣∣∣∣
D0

σDj

)2

, (16)

Because moment methods rely on an underlying distribution associated with the input parameters, these
methods can only be used to propagate aleatory uncertainty. To propagate epistemic uncertainties, a similar
equation based on interval addition may be used. Given the size of the input intervals ∆Dj , the size of the
output interval about the mean is given by:

∆
(1)
J =

M∑
j=1

∣∣∣∣∣ dJdDj

∣∣∣∣
D0

∆Dj

∣∣∣∣∣ (17)

These linear models are inherently local in nature and therefore cannot account for the nonlinear na-
ture of the underlying design space, limiting their usefulness to design variables with relatively small input
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uncertainties or simple design spaces.38 An additional drawback of the method of moments is that the
probability density function of the output is not readily available. If the complete probability distribution
function (PDF) of the objective is desired, Monte-Carlo sampling represents the most straight-forward ap-
proach. The number of simulations required for Monte-Carlo sampling can be dramatically reduced when
sensitivity information is available by computing only a small number of simulations and extrapolating or
interpolating the simulation results using the sensitivity information in between these simulation values.5,6, 42

Additionally, a global surrogate model for the function space can be created and sampled in place of the
actual function. The simplest such surrogate model would be a linear representation of the function space
in which the gradient is used to extrapolate function values about the mean. If more accuracy is required
or the underlying function space is more complicated a better surrogate model, such as Kriging, is required.

IV.B. Linear Extrapolation

A useful application of the gradient is for extrapolation as discussed in Ghate and Giles.6 The extrapolated
function values can, for example, be used for an inexpensive Monte Carlo (IMC) simulation5,43,44 for un-
certainty analysis as extrapolation of the function value is much less expensive than a nonlinear function
evaluation.

For the first-order sensitivities available from the discrete adjoint and tangent linear model, four different
extrapolations may be used. These extrapolations include a linear extrapolation as well as three adjoint
corrected extrapolations (see Giles et al.45,46 for theoretical details on adjoint error correction). The linear
extrapolation (Lin) represents a first-order Taylor series of the objective about the mean input parameters,
given by:

JLin = J
(
D0,U(D0)

)
+

dJ

dD

∣∣∣∣
D0

· (D −D0) (18)

The adjoint corrected extrapolations rely on the fact that the objective function is a relatively inexpensive
function for a given set of flow variables. Hence, the explicit dependence of the objective on the design
variables may be treated exactly, linearizing only with respect to the flow variables. The adjoint corrected
function evaluation of constant terms (ACCT) uses the product of the discrete adjoint and the residual to
approximate the effect of changes in flow variables on the objective. The ACCT extrapolation is given by:

JACCT = J
(
D,U(D0)

)
+ ΛT

D0
·R
(
D,U(D0)

)
,

Here, R(D,U(D)) is the residual of the flow equations evaluated at the perturbed design points and Λ is the
flow adjoint. The final two adjoint corrected extrapolations utilize information from the forward sensitivity,
namely ∂U

∂D , to further approximate the effect of perturbations in the flow variables caused by a change in
the design variables. The adjoint corrected linear extrapolation (ACLin) is given by:

JACLin = JLin + ΛT
D0
·R
(
D,U(D0) +

dU

dD

∣∣∣∣
D0

· (D −D0)
)

Finally, the adjoint corrected function evaluation of linearly extrapolated terms (ACLT) is given as:

JACLT = J
(
D, q(D0) +

dq

dD

∣∣∣∣
D0

· (D −D0)
)

+ ψTD0
·R
(
D, q(D0) +

dq

dD

∣∣∣∣
D0

· (D −D0)
)

(19)

Using these extrapolations, the objective throughout the design space can be approximated and used
within an inexpensive Monte Carlo simulation. The most simple IMC approach would use a single set of
function and derivative values evaluated at the mean quantities to represent the entire design space. Instead
of taking samples from the simulation, function values are replaced with extrapolated values. For larger or
more complicated uncertainty spaces, Dutch interpolation based on multiple samples may be used.5,42,43

For the hypersonic test cases presented in this paper, only results using linear extrapolation and ACCT
are presented, although the infrastructure for all of the above extrapolation techniques is available. In order
to demonstrate the above extrapolation techniques, the error encountered in extrapolating surface heating is
plotted in Figure 6 for the 5km/s benchmark using the perfect gas model for one design variable, freestream
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density. As the Figure demonstrates, both extrapolations work reasonably well for small perturbations
(< 5%) but break down as the size of the perturbation increases, with the error in the linear extrapolation
increasing faster than ACCT. This behavior is expected as the ACCT extrapolation only linearizes with
respect to flow variables and treats the explicit dependence of the objective on the design variables exactly.

Figure 6. Error of Surface Heating Extrapolation for 5km/s test case using Linear and ACCT of Freestream Density

IV.C. Uncertainty Quantification Using Kriging Models

In order to provide a more accurate representation of the design space and propagate large input uncertainties,
a more sophisticated representation of the function space is created using Kriging based surrogate models.
Recently, the authors of this paper have developed gradient enhanced direct, as well as indirect, Kriging
models for computational fluid dynamic simulations (also known as Co-Kriging models).8,22,44 For these
methods, the covariance of function/gradient and of gradients is considered in order to provide additional
training points to the model at reduced computational cost. For each function/gradient evaluation, M + 1
pieces of information are obtained, where M is the dimension of the problem. This additional information
can be used to greatly reduce the number of training points required to yield an accurate model. The
construction of Kriging models is based on the assumption that the output variable J is a random variable
obeying a Gaussian process, represented as:

J = N(m(D),K(D,D′)) (20)

where m(D) is the mean function of the distribution and K is the covariance matrix of the training data. For
gradient enhanced Kriging models, the covariance between function and derivative observations is considered,
as these values obey the same Gaussian process due to the linearity of differentiation. For this work, the mean
function is assumed constant, corresponding to ordinary Kriging. Using the observation data, represented
by the vector J, the behavior of J away from these observations can be predicted using the equation:

J∗ = µ0 + k(D∗, D)K−1 (J− µ0) (21)

For more details on the Kriging models used for this work, references 8,22,44 should be consulted.
Using the Kriging model, a number of uncertainty quantification strategies may be employed. For aleatory

uncertainties, the surrogate model can be sampled using traditional Monte Carlo sampling at reduced cost.
For epistemic uncertainties, Monte Carlo methods may also be employed, but the results can only be inter-
preted with regards to the interval of the output functional produced, with no inferred statistical distribution.
Other approaches, such as Dempster-Shafer evidence theory also require large numbers of function evalu-
ations.47 In this case, the construction of a Kriging model remains an effective option for propagating
epistemic uncertainties. In addition to sampling based approaches, epistemic uncertainty may also be propa-
gated based on constrained optimization. This can either be performed by exhaustive sampling (capitalizing
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on the reduced cost of the surrogate) or by optimization techniques such as the expected improvement (EI)
techniques often invoked with Kriging methods. Using EI, the statistical distribution inherent in the Kriging
model can be used to determine the areas in the design space with the highest probability of producing new
extrema in the output.

V. Perfect Gas Demonstration Results

In order to demonstrate the use of derivative values for efficient uncertainty quantification, the 5 km/s
benchmark test using the perfect gas model was first examined. For these tests, the uncertain parameters are
the freestream properties and the effect these parameters have on integrated surface heating is quantified. In
particular, the freestream density, velocity, temperature, viscosity and thermal conductivities are treated as
uncertain. Table 2 contains the mean values for these variables as well as the associated uncertainty. For this
preliminary work, a 5% standard deviation in all variables except freestream velocity was assumed, inspired
by the experiences of .4,48 For freestream velocity, a standard deviation of 15.42m/s is used.48 For these first
tests, the uncertainties in the input parameters were assumed to be aleatory and distributed according to a
normal distribution. Because this work ultimately relies on creating a surrogate model independent of input
distribution, it can be extended to account for epistemic uncertainties. Preliminary Epistemic uncertainty
results will be presented later in this section.

Table 2. Test Case flow conditions and Uncertainty for Perfect Gas Case

Variable Mean Value Standard Deviation

V∞ = 5 km/s 15.42 m/s

ρ∞ = 0.001 kg/m3 5× 10−5 kg/m3

T∞ = 200 K 10 K

µ∞ = 1.3265× 10−5kg/(m− s) 6.6325× 10−7kg/(m− s)
k∞ = 1.8576× 10−2W/(m−K) 9.2880× 10−4W/(m−K)

In order to provide a baseline for comparison, Monte Carlo sampling of the flow solver was used to
quantify the mean and standard deviation of the integrated surface heating based on the input distributions
outlined above. In order to acquire the necessary statistics, 5000 simulation outputs were generated using
Latin Hypercube sampling of the input parameters. The convergence of the mean and standard deviation
for integrated surface heating are found in Figure 7. Table 3 contains the fully converged statistics of the
Monte Carlo samples. These statistics will serve as the metric by which the other uncertainty quantification
techniques are compared.

Table 3. Monte Carlo Statistics for Surface Heating after 5000 Samples for Perfect Gas Case

Mean (µ) 1.47069× 10−2

Standard Deviation (σ) 5.38407× 10−4

95% Confidence Interval ±7.3218%

V.A. Linear Results

As a first attempt at quantifying the uncertainty present in the 5km/s benchmark, a first-order moment
method is used to estimate the mean and standard deviation of the output. These results are found in
Table 4. As the table shows, the moment method slightly underestimates the mean and standard deviation.
Remarkably, the results are surprisingly good considering the highly nonlinear nature of the underlying
physical problem. It should be noted that the input uncertainties specified for this test problem are relatively
small and it is likely the results would not agree as well for larger input uncertainties .3

In order to demonstrate the utility of linear extrapolation for the purposes of IMC sampling, a single
function and gradient evaluation is performed and linear extrapolation is used to determine the function value
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Figure 7. Monte Carlo convergence of Surface Heating for Average and Variance for Perfect Gas Case.

Table 4. First-Order Moment Method Statistics for Surface Heating for Perfect Gas Case.

Moment Method Nonlinear Monte Carlo

Mean (µ) 1.46917× 10−2 1.47069× 10−2

Standard Deviation (σ) 5.32578× 10−4 5.38407× 10−4

95% Confidence Interval ±7.2501% ±7.3218%

about the mean. In principle, all the extrapolation methods presented in the previous subsection can be
applied. In practice however, the adjoint corrected approaches have difficulties with the evaluation of the flow
residual for large perturbations. In order to eliminate any source of bias, the same 5000 samples locations
used for the nonlinear Monte Carlo sampling are used for the extrapolation. In addition to calculating
statistics based on a linear representation of the design space, the output probability distribution function
is also calculated and compared to the distribution found via Monte Carlo sampling. Table 5 contains
the statistics for the linear extrapolation model. The statistics produced based on linear extrapolation are
nearly equal to those produced by the method of moments. Although the linear extrapolation approach
does produce statistics slightly closer to those from the nonlinear Monte Carlo sampling, this result is likely
due to the limited number of samples used to build up the output distribution. As the number of samples
is increased, the linear extrapolation statistics approach the method of moments results as expected. The
distribution of the output for the linear extrapolation model is plotted and compared to the nonlinear Monte
Carlo results in Figure 8. As the figure shows, the distribution near the mean is predicted well but some
details begin to be lost at approximately one standard deviation from the mean.

Table 5. IMC Results using Linear Extrapolation for Surface Heating for Perfect Gas Case.

Linear Extrapolation Nonlinear Monte Carlo

Mean (µ) 1.46970× 10−2 1.47069× 10−2

Standard Deviation (σ) 5.35082× 10−4 5.38407× 10−4

95% Confidence Interval ±7.2815% ±7.3218%
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Figure 8. Histogram of Surface Heating from Linear Extrapolation compared to Nonlinear Monte Carlo results

V.B. Kriging Results

In order to test the applicability of Kriging models for uncertainty quantification and improve upon the
previous linear results, Kriging models with varying numbers of training points were constructed and the
output statistics based on these models were computed. Table 6 shows the mean and standard deviation
from an IMC simulation using Kriging models created exclusively from function evaluations. As the table
shows, approximately 40 function evaluations are required to match the nonlinear Monte Carlo statistics.
In addition to statistics, the Kriging model can be used to produce a PDF of the output. Figure 9 contains
the approximate PDF for a Kriging model based on 40 function evaluations. As the figure shows, although
the peak of the PDF is not matched as well as the linear extrapolation PDF, the overall shape of the curve
is captured over a wider range of the distribution.

Table 6. IMC Results using Kriging Model for Surface Heating

Sample Points Mean Standard Deviation 95% Confidence Interval

10 1.47550× 10−2 5.48708× 10−4 ±7.4376%

20 1.47090× 10−2 5.39907× 10−4 ±7.3412%

30 1.47150× 10−2 5.46086× 10−4 ±7.4222%

40 1.47100× 10−2 5.38433× 10−4 ±7.3206%

50 1.47070× 10−2 5.38767× 10−4 ±7.3267%

60 1.47060× 10−2 5.38266× 10−4 ±7.3204%

In order to reduce the number of samples required to accurately represent the function space, a gradient
enhanced model is also examined. Table 7 contains the statistics using a direct Co-Kriging model. As
the table shows, far fewer function/gradient evaluations are required to match the nonlinear Monte Carlo
statistics. With only 4 function/gradient evaluations, the statistics are matched quite well. Considering that
gradient evaluations are approximately the same cost as function evaluations, this result represents a large
improvement over the 40 function evaluations required for the function-only Kriging model. In addition to
capturing the output statistics, Figure 10 shows the ability of the Co-Kriging model to capture the PDF of
the output with relatively few function/gradient evaluations.
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Figure 9. Histogram of Surface Heating from Kriging Model compared to Nonlinear Monte Carlo results

Table 7. IMC Results using Kriging Model for Surface Heating

Sample Points Mean Standard Deviation 95% Confidence Interval

4 1.47070× 10−2 5.38544× 10−4 ±7.3236%

8 1.47090× 10−2 5.39268× 10−4 ±7.3325%

10 1.47070× 10−2 5.38544× 10−4 ±7.3236%

50 1.47070× 10−2 5.38424× 10−4 ±7.3220%

V.C. Epistemic Uncertainty Results

In order to demonstrate the utility of gradient information for propagating epistemic uncertainty, the above
perfect gas problem was re-examined with the input uncertainties treated as epistemic instead of aleatory.
For this problem, gradient information is leveraged in two different ways. As a first step, Equation 17
is used to estimate the output interval by assuming the objective behaves linearly. In order to provide
a comparison for this approach and further demonstrate the manner in which gradients may be used, a
constrained optimization problem was solved in order to determine the associated output interval based
on given input intervals. For this optimization, the L-BFGS algorithm was used due to the availability of
gradient observations.

In order to consider the propagation of epistemic uncertainty, the previously defined problem must be
recast and the input parameters must be defined in the interval sense. Within the literature, uncertain
parameters are typically reported as the mean value plus/minus an interval width. For the aleatory case,
this reported interval width was assumed to represent a 95% confidence interval for the parameter. For the
epistemic case, two cases were considered. First, the reported uncertainty was assumed to represent the
half-width of the input interval (i.e. the upper bound is the mean plus the reported uncertainty and the
lower bound is the mean minus the reported uncertainty). This interpretation is the most likely meaning
from the reported values. In order to provide a more difficult test for the method, a four sigma half-width
interval was also used. If the reported values were indeed aleatory in nature, then taking an interval of
four sigma on either side of the mean would ensure that virtually all parameter values are included in the
analysis. Although this is not a likely interpretation of the data, it was considered to provide a more difficult
test problem for the linear analysis and optimization. The associated input intervals for each scenario are
given in Table 8.

As a first attempt to propagate epistemic uncertainty for the perfect gas problem, local sensitivity deriva-
tives were used to estimate the output interval of the objective using Equation 17. For this linearized ap-
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Figure 10. Histogram of Surface Heating from Gradient Enhanced Kriging Model compared to Nonlinear Monte Carlo
results

Table 8. Test Case Input Intervals for Perfect Gas Case

Variable Lower Bound (2 σ) Upper Bound (2 σ) Lower Bound (4 σ) Upper Bound (4 σ)

V∞(m/s) = 4969.16 5030.84 4938.32 5061.68

ρ∞ (kg/m3)= 0.0009 0.0011 0.0008 0.0012

T∞(K) = 180 220 160 240

µ∞(kg/(m− s)) = 1.19385× 10−5 1.45915× 10−5 1.0612× 10−5 1.5918× 10−5

k∞(W/(m−K)) = 1.6718× 10−2 2.0434× 10−2 1.4861× 10−2 2.2291× 10−2

proach, both input intervals were considered. Table 9 contains the results for this linearized analysis. The
percentage uncertainty for this case is interval width divided by the average value. The output interval
is assumed to be centered about the mean value and the upper and lower bounds are determined using
Equation 17 and the half-width of each of the input intervals.

Table 9. Perfect Gas Output interval based on Linear Method

Input Interval Lower Bound Upper Bound Interval Width

2 σ 1.3121× 10−2 1.6262× 10−2 21.38%

4 σ 1.1550× 10−2 1.7833× 10−2 42.76%

In order to provide a comparison for the linearized results, an optimization approach is used to determine
the minimum and maximum possible objective values given the bounds on the input parameters. Because
of the simplicity of the design space for this problem, the optimization results will be assumed to be correct
results. For a more complicated design space, this assumption may be poor as the optimization may become
stuck in local extrema and the optimization results may need to be further validated by an exhaustive
sampling approach .23 Figure 11 contains the results for both the minimization and maximization for both
input intervals. As the Figure shows, the optimization rapidly converges to both extrema. For this simple
problem, these extrema simply occur at the extremes of the input intervals. Table 10 contains the resulting
output intervals for each input interval. Comparing the two methods, it can be seen that the linearized
approach produces nearly identical output intervals when compared to the optimization approach. Based on
the other results presented for this problem, this fact should not be surprising as the linear models appear
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to be sufficient for representing the design space of the perfect gas model.

Figure 11. Optimization results for surface heating based on Left: the 2σ equivalent interval and Right: the 4σ
equivalent interval.

Table 10. Perfect Gas Output interval based on Optimization Method

Input Interval Lower Bound Upper Bound Interval Width

2 σ 1.3201× 10−2 1.6359× 10−2 21.49%

4 σ 1.1844× 10−2 1.8262× 10−2 43.68%

In order to demonstrate the error encountered by treating epistemic uncertainties as aleatory, the above
results can be compared to the corresponding interval based on the aleatory results. In order to convert the
aleatory results to an interval, the same procedure used on the input parameters can be used. Hence, a four
sigma or eight sigma equivalent interval on the output is used for the respective input intervals. These results
are compared to the epistemic results produced by the optimization in Table 11. As the table shows, treating
these parameters as aleatory greatly underestimates the uncertainty in the output if the parameters are in
reality epistemic. For this particular problem, the uncertainty assuming aleatory uncertainty in the inputs
is approximately 75% of the variability present when the inputs are assumed to have epistemic uncertainty.
Hence, methods which can only account for aleatory uncertainties likely underestimate the output variability
in the presence of epistemic uncertainty.

Table 11. Comparison to Alleatory for Perfect Gas case

Input Interval Epistemic Interval Width Equivalent Alleatory Width

2 σ 21.49% 14.64%

4 σ 43.68% 29.29%

VI. Real Gas Results

In order to provide a more difficult test of the proposed uncertainty quantification strategies, the 5km/s
benchmark case was reconsidered using the real gas model. As stated previously, the real gas model con-
tains approximately 250 parameters. In order to reduce the computational cost associated with validating
the uncertainty quantification and constructing the Kriging surface, only fifteen parameters are treated as
uncertain. These fifteen parameters were chosen based on similar uncertainty studies found in previous
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work4,48 as well as the sensitivity analysis presented in Section III. The parameters chosen for this study,
as well as the assumed standard deviations for these variables, can be found in Table 12. The choice of
freestream parameters was influenced by reference,48 while the particular choice of cross-sections was based
on reference.4 These choices account for ten variables. Finally, based on the sensitivity analysis presented
in Section III, the five most important reaction terms were chosen in order to account for uncertainty with
respect to more varied parameters. The uncertainty for these parameters was taken from.49 If this work was
being performed in isolation, the sensitivity analysis alone would suffice for choosing the parameters. For
the most part, the results of the sensitivity analysis are in line with the choice of variables based on4,48 with
only slight differences with regard to the choice of cross-sections.

Table 12. Real Gas Model Parameters

Number Variable Standard Deviations

1 V∞(m/s) 15.42

2 ρ∞ (kg/m3) 5%

3-4 Ω1,1
N2−N2,Ω

2,2
N2−N2 10%

5-6 Ω1,1
N2−N ,Ω

2,2
N2−N 10%

7-8 Ω1,1
N2−O,Ω

2,2
N2−O 10%

9-10 Ω1,1
N2−O2,Ω

2,2
N2−O2 10%

11 log10(Cb−O2+O�2O+O) 0.5

12 log10(Cf−N2+O�NO+N ) 0.5

13 log10(Cb−N2+O�NO+N ) 0.5

14 log10(Cf−NO+O�O2+N ) 0.5

15 log10(Cb−NO+O�O2+N ) 0.5

For the collision integrals, the mean values at 2000 K and 4000 K were perturbed by the same amount,
shifting the collision integral curve used for interpolation. This treatment was chosen due to the assumption
that the uncertainty in these collision integral values is correlated.

In order to provide a validation metric for the linear and surrogate based results, Monte Carlo sampling
based on Latin hypercube was used to determine the average and variance of the surface heating. For this
test case, the input parameters were assumed to be aleatory and governed by a normal distribution. As was
the case with the perfect gas test case, the reported uncertainties were assumed to represent a 95% confidence
interval. Due to the limited computational budget, only 475 samples were possible. The convergence of the
average and variance for the sampling is found in Figure 12. As the plot demonstrates, the average and
variance appear to be converged despite the limited number of sample points. In spite of the appearance of
convergence, error bounds should be established for the average and variance in order to provide a means of
comparison with the alternative UQ strategies proposed.

For Monte Carlo sampling, the convergence of function statistics obeys a normal distribution with a
variance dependent on the number of samples. For the mean, the standard deviation for this convergence
distribution is given by:50

σN =
σ√
N

(22)

where σ is the underlying standard deviation of the distribution being sampled (that is the objective function,
surface heating). This standard deviation is in turn estimated by the sample variance (S2) of the Monte
Carlo results. Using this standard deviation estimate, a 95% confidence interval for the average prediction
can be established based on a two-σ bound.

To provide bounds for the sample variance, its variance most also be estimated. For i.i.d samples, the
variance of the sample variance can be calculated as:51

V ar(S2) = σ4

(
2

N − 1
+
K

N

)
(23)
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Figure 12. Monte Carlo convergence of Surface Heating for Average and Variance for Real Gas Case.

where K is the kurtosis of the distribution being sampled. The kurtosis can be estimated using the sample
kurtosis G, given as:52

G =
1
N

∑N
i=1(yi − ȳ)4(

1
N

∑N
i=1(yi − ȳ)2

)2 − 3 (24)

Table 13 contains the mean and standard deviation predictions based on the 475 sample points. Along with
these results are associated 95% confidence intervals for each of these predictions. These results represent
the standard by which the other uncertainty quantification strategies will be judged.

Table 13. Real Gas Monte Carlo Results

Statistic Value Error Bound 95% Lower Bound 95% Upper Bound

Average 1.1368× 10−2 ±6.46× 10−2 1.1303× 10−2 1.1433× 10−2

Variance 4.9562× 10−7 ±5.10× 10−8 4.4465× 10−7 5.4660× 10−7

Standard Deviation 7.0400× 10−4 ±3.63× 10−5 6.6682× 10−4 7.3932× 10−4

95% Confidence Interval ±12.385% ±0.637% ±11.7315% ±13.0071%

VI.A. Linear Results

As a first attempt to quantify the uncertainty for the real gas model, local sensitivity derivative values
were calculated and used as a means of ranking the individual contributions to uncertainty made by each
variable as well as estimate the total uncertainty in the surface heating due to the 15 variables. In order
to assess the individual contributions to uncertainty by each variable, the sensitivity derivative for each
variable was multiplied by its associated standard deviation. The magnitudes for these contributions are
plotted in Figures 13. From these results, freestream density and the ΣN2−O collision integral contribute
the most to the surface heating uncertainty. It should be noted that these represent contributions to non-
dimensional surface heating. Because freestream density and velocity are used to non-dimensionalize surface
heating, the relative importance of the variables is altered when dimensional surface heating is considered.
Figure 13 shows the relative contributions to dimensional surface heating. When the dimensional objective
is analyzed, freestream density and velocity become the biggest contributors to the uncertainty. These
results are in agreement with other uncertainty analysis performed in other works.4,48 The advantage of this
approach being that this information was acquired from a single flow solution and adjoint solution.
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Figure 13. Left: Contribution of each variable to uncertainty of non-dimensional integrated surface heat using linearized
analysis. Right: Contribution of each variable to uncertainty of dimensional integrated surface heat using linearized
analysis.

The total uncertainty in surface heating is estimated using Equation 16. The statistics from this localized
treatment are compared to the Monte Carlo results in Table 14. As these results demonstrate, the linearized
approach greatly underestimates the confidence interval on the surface heating. Despite underestimating
the total confidence interval for surface heating, the linearized estimate is likely accurate enough to give a
rough approximation of the quality of an answer and the relative magnitudes of the individual uncertainty
contributions appear to agree with previous uncertainty studies.4,48

Table 14. First-Order Moment Method Statistics for Surface Heating for Real Gas Case.

Moment Method Nonlinear Monte Carlo

Mean (µ) 1.1238× 10−2 1.1368× 10−2

Standard Deviation (σ) 3.1033× 10−4 7.0400× 10−4

95% Confidence Interval ±5.5231% ±12.385%

VI.B. Kriging Results

In order to improve upon the results of the linearized analysis, the use of Kriging models for representing the
real gas design space was investigated. Using function values only, Kriging models using varying numbers of
training points were created and the statistics based on these models were calculated. The convergence of
the average and the 95% confidence interval are plotted in Figure 14 as a function of training points. As the
plot demonstrates, the average rapidly converges to the interval corresponding to the Monte Carlo results.
The confidence interval prediction is essentially converged after approximately 100 training points. The
confidence interval predicted by the Kriging surface is relatively low compared to the Monte Carlo results.
However, the Kriging model using a fifth of the number of samples used for the Monte Carlo results gives a
relatively good estimate of the surface heating uncertainty.

Due to robustness issues in calculating the sensitivity derivatives for design variables away from the mean,
Co-Kriging results using the real gas model are not available. Because the calculation of derivatives requires
the inversion of the residual Jacobian (or transpose of the Jacobian in the case of the adjoint), the calculation
of sensitivity derivatives is affected greatly by the condition number of the Jacobian and the starting point
of the iterative solver. For small departures from the mean, the Jacobian inversion can be performed
successfully. As design variables farther from the mean are considered, the Jacobian requires an impractical
amount of diagonal padding to successfully calculate the adjoint. It should be noted that these same areas
of the design space presented problems for the flow solution. However, in the case of the flow solution,
physics based robustness enhancers, such as freezing transport terms or adjusting limiter constants, may be
employed. To improve the robustness of the adjoint solution process, additional preconditioning techniques
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Figure 14. Left: Average prediction of Kriging model as function of training points. Right: Confidence Interval
prediction of Kriging model as function of training points.

as well as more sophisticated matrix inversion algorithms should be examined; however, this examination is
left for future work.

VII. Conclusions and Future Work

Within this paper, the use of gradient observations in conjunction with inexpensive surrogate models for
uncertainty quantification in hypersonic flows has been demonstrated. Using sensitivity derivatives calculated
from the discrete adjoint, input parameter uncertainty was propagated to the output using the method of
moments and inexpensive Monte Carlo based on linear extrapolation. To provide a more sophisticated model
of the design space, Kriging and Co-Kriging models were also examined as a basis for inexpensive Monte
Carlo. To demonstrate the proposed methods, two uncertainty problems were considered. In order to test
a wide variety of models on a relatively simple problem, the uncertainty of surface heating associated with
the freestream conditions was examined based on the perfect gas model. Using the method of moments
and an inexpensive Monte Carlo based on linear extrapolation, the mean and standard deviation of the
integrated surface heating was estimated. These results compared favorably to the statistics derived from
Monte Carlo sampling based on the nonlinear flow solver. In addition to the mean and standard deviation
of the output, the probability distribution function (PDF) for the surface heating was approximated based
on the linear extrapolation results and compared to the PDF from the nonlinear Monte Carlo results. These
first-order methods provided reasonable estimates of the output statistics but were slightly optimistic when
compared to the results of the nonlinear Monte Carlo sampling. In an attempt to improve the agreement of
the statistics and approximate PDF’s from the inexpensive Monte Carlo procedure, linear extrapolation was
replaced by a Kriging model. For this method, a Kriging model of the function space was created and used
to determine the function value at the perturbed design variables. Using relatively few function samples
(approximately 40 for 5 design variables), the Kriging-based IMC accurately matched the statistics of the
nonlinear Monte Carlo results and accurately captured many of the features of the output PDF, especially
toward the tails of the distribution. Additionally, a gradient enhanced Kriging model was created. By using
gradient information, the required number of function/gradient evaluations needed to accurately match the
output statistics was greatly reduced.

In order to provide a more difficult test for the proposed uncertainty quantification strategies, the un-
certainty of integrated surface heating associated with parameters within the real gas model was quantified.
In order to provide a rough estimate of the total uncertainty and analyze the contribution to uncertainty
by each variable, a linear model based on sensitivity derivatives was used. Although the total uncertainty
estimate was greatly underestimated relative to the nonlinear Monte Carlo results compiled for this problem,
this linearized analysis was able to provide an estimate of which variables provide the greatest contribution
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to the overall uncertainty. The variable ranking based on this estimate was in general agreement with the
individual contribution estimates of previous uncertainty studies.4,48 To provide a better estimate of the
overall uncertainty in surface heating, a series of Kriging models were created based on function evaluations.
Using 100 function evaluations, the Kriging model was able to closely replicate the statistics of the full Monte
Carlo sampling, representing nearly a factor of five savings.

In order to improve upon these results and further reduce the associated cost of uncertainty, the use
of gradient-enhanced Kriging models for the larger dimensional real gas model should be further explored.
Additionally, the propagation of epistemic uncertainty using the constrained optimization approach should
be considered for the more difficult real gas problem. For both of these goals, significant robustness en-
hancements in the discrete adjoint solver must be made. Once these robustness enhancements have been
made, further work will explore dimension reduction techniques as well as multiple fidelity methods within
the context of real gas problems and Kriging models.
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